精英家教网 > 高中物理 > 题目详情
2.宇宙中有两颗相距无限远的恒星X1、X2,半径均为R0.图中T和r分别表示两颗恒星周围行星的公转周期和公转半径,则(  )
A.恒星X1表面的重力加速度大于恒星X2表面的重力加速度
B.恒星X1的第一宇宙速度大于恒星X2的第一宇宙速度
C.恒星X1的密度小于恒星X2的密度
D.距离两恒星表面高度相同的行星,绕恒星X1运行的行星公转周期较小

分析 根据万有引力等于向心力,得到${T}_{\;}^{2}$与${r}_{\;}^{3}$的表达式,结合图线的斜率,得到恒星质量的大小关系,根据重力等于万有引力比较恒星表面的重力加速度,根据$v=\sqrt{\frac{GM}{R}}$比较第一宇宙速度,根据$ρ=\frac{M}{V}$比较密度,周期公式$T=\sqrt{\frac{4{π}_{\;}^{2}{r}_{\;}^{3}}{GM}}$比较周期

解答 解:A、行星围绕恒星做匀速圆周运动,万有引力提供向心力,设恒星质量为M,行星质量为m,根据牛顿第二定律,有:
$G\frac{Mm}{{r}_{\;}^{2}}=m\frac{4{π}_{\;}^{2}}{{T}_{\;}^{2}}r$
得:$\frac{{T}_{\;}^{2}}{{r}_{\;}^{3}}=\frac{4{π}_{\;}^{2}}{GM}$
由${T}_{\;}^{2}-{r}_{\;}^{3}$图线是一条过原点的直线,知${T}_{\;}^{2}$∝${r}_{\;}^{3}$,斜率$k=\frac{4{π}_{\;}^{2}}{GM}$
图线1斜率大于图线2的斜率,所以有:${M}_{{X}_{1}^{\;}}^{\;}<{M}_{{X}_{2}^{\;}}^{\;}$
根据$mg=G\frac{Mm}{{R}_{0}^{2}}$,得:$g=G\frac{M}{{R}_{0}^{2}}$
所以恒星${X}_{1}^{\;}$表面的重力加速度小于恒星${X}_{2}^{\;}$表面的重力加速度,故A错误.
B、第一宇宙速度公式$v=\sqrt{\frac{GM}{R}}$,两恒星半径相等,${M}_{{X}_{1}^{\;}}^{\;}<{M}_{{X}_{2}^{\;}}^{\;}$,所以恒星${X}_{1}^{\;}$的第一宇宙速度小于恒星${X}_{2}^{\;}$的第一宇宙速度,故B错误.
C、两恒星半径相等,体积相等,$ρ=\frac{M}{V}$,因为${M}_{{X}_{1}^{\;}}^{\;}<{M}_{{X}_{2}^{\;}}^{\;}$,所以恒星${X}_{1}^{\;}$密度小于恒星${X}_{2}^{\;}$的密度,故C正确.
D、根据周期公$T=\sqrt{\frac{4{π}_{\;}^{2}{r}_{\;}^{3}}{GM}}$,距两恒星表面高度相同的行星,轨道半径相同,因为${M}_{{X}_{1}^{\;}}^{\;}<{M}_{{X}_{2}^{\;}}^{\;}$,所以绕恒星${X}_{1}^{\;}$运行的行星周期大,故D错误.
故选:C

点评 本题考查考生从图象获取信息的能力,写出图象得函数表达式,从斜率入手分析是解本题的突破口.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

12.如图所示,一辆行驶的汽车将一重物A提起,若要使重物A匀速上升,则在此过程中,汽车的运动情况是(  )
A.加速运动B.减速运动C.匀速运动D.不能确定

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

13.把220V的正弦式电流接在440Ω电阻两端,则该电阻的电流峰值为(  )
A.0.5AB.0.5$\sqrt{2}$AC.2$\sqrt{2}$AD.$\sqrt{2}$A

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

10.如图,A是地球的同步卫星.另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球质量为M,O为地球中心.
(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即 k是一个对所有行星都相同的常量.开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立.请你推导出地月系中该常量k的表达式.已知引力常量为G.
(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们还能相距最近?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

17.用一根轻绳系着盛水的杯子,抡起绳子,让杯子在竖直平面内做圆周运动.杯子内的水质量m=0.3kg,绳子长度L=0.8m.求:
(1)在最高点水不流出杯子的最小速率;
(2)水在最高点速率v=4m/s,水对杯底的压力为多大.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

7.如图所示,M是水平放置的半径足够大的圆盘,绕过其圆心的竖直轴OO′匀速转动,规定经过圆心O点且水平向右为x轴正方向.在O点正上方距盘面高为h=1.25m处有一个可间断滴水的容器,从t=0时刻开始,容器沿水平轨道向x轴正方向做初速度为零的匀加速直线运动.已知t=0时刻滴下第一滴水,以后每当前一滴水刚好落到盘面时再滴下一滴水.则:(取g=10m/s2
(1)每一滴水离开容器后经过多长时间t滴落到盘面上?
(2)要使水滴在盘面上的落点位于同一直线上,圆盘的角速度ω1至少该为多大?
(3)若圆盘的角速度为ω2=4πrad/s,且容器的加速度a=2m/s2,第二滴水与第三滴水在盘面上落点间的距离d为多大?

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

14.某同学设计了一个“探究加速度a与物体所受合力F及质量m的关系”实验.如图1所示为实验装置简图,A为小车,B为电火花计时器(其接50Hz的交流电),C为装有砝码的 小盘,D为一端带有定滑轮的长方形木板,实验中认为细绳对小车的拉力F等于砝码和小盘的总重力,小车运动的加速度a可用纸带上的打点求得.
(1)电火花计时器应接交流220v电压.
(2)实验中认为细绳对小车的拉力F等于砝码和小盘的总重力,应满足砝码和小盘的总质量远小于小车的质量.
(3)如图2为某次实验得到的纸带,根据纸带可求出小车的加速度大小为3.2 m/s2.(结果保留两位有效数字)
(4)在“探究加速度与质量的关系”时,保持砝码和小盘质量不变,改变小车质量m,分别得到小车加速度a与质量m的数据如下表:
实验次数123456789
小车加速度
a/(m•s-2
1.981.721.481.251.000.750.480.500.30
小车质量
m/kg
0.250.290.330.400.500.710.751.001.67
根据上表数据,为直观反映F不变时a与m的关系,请在图3中的方格坐标纸中选择恰当物理量建立坐标系,并作出图线.(如有需要,可利用上表中的空格数据)

(5)在“探究加速度与力的关系”时,保持小车的质量不变,改变小盘中砝码的质量,该同学根据实验数据作出了加速度a与合力F的关系图线如图4所示,该图线不通过坐标原点,试分析图线不通过坐标原点的原因.
答:未平衡摩擦力或平衡摩擦力不足.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

11.古希腊哲学家芝诺提出了一个著名的运动佯谬,认为飞毛腿阿基里斯永远追不上乌龟.设阿基里斯和乌龟的速度分别是v1和v2(v1>v2).开始时,阿基里斯在O点,乌龟在A点,O,A相距为L.当阿基里斯第一次跑到乌龟最初的位置A时,乌龟到了第二个位置B;当阿基里斯第二次跑到乌龟曾在的位置B时,乌龟到了第三个位置C.如此等等,没有经过无穷多次,阿基里斯是无法追上乌龟的. 
(1)阿基里斯第n次跑到乌龟曾在的位置N时,总共用了多少时间. 
(2)证明经过无穷多次这样的追赶,阿基里斯可以追上乌龟,并求追上用了多少时间.
(3)可是,人们还是可以替芝诺辩护的,认为他用了一种奇特的时标,即把阿基里斯每次追到上次乌龟所到的位置作为一个时间单位.现称用这种时标所计的时间叫做“芝诺时”(符号τ,单位:芝诺).即阿基里斯这样追赶了乌龟n次的时候,芝诺时τ=n芝诺.试推导普通时与芝诺时的换算关系,即τ=f(t)的函数关系.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

12.相隔一定距离的电荷或磁体间的相互作用是怎样发生的?这是一个曾经使人感到困惑、引起猜想且有过长期争论的科学问题.19世纪以前,不少物理学家支持超距作用的观点.英国的迈克尔•法拉第于1837年提出了电场和磁场的概念,解释了电荷之间以及磁体之间相互作用的传递方式,打破了超距作用的传统观念.1838年,他用电力线(即电场线)和磁力线(即磁感线)形象地描述电场和磁场,并解释电和磁的各种现象.下列对电场和磁场的认识,正确的是(  )
A.法拉第提出的磁场和电场以及电力线和磁力线都是客观存在的
B.在电场中由静止释放的带正电粒子,一定会沿着电场线运动
C.磁感线上某点的切线方向跟放在该点的通电导线的受力方向一致
D.通电导体与通电导体之间的相互作用是通过磁场发生的

查看答案和解析>>

同步练习册答案