·ÖÎö £¨1£©ÓÉÂåÂØ×ÈÁ¦ÌṩÏòÐÄÁ¦¿ÉÇóµÃ°ë¾¶¹«Ê½£®
£¨2£©ÓÉÓÚÇøÓò¢ñºÍ¢ò´Å³¡µÄ´óСÏàµÈ·½ÏòÏà·´£¬ËùÒÔ´ÓOµã´¹Ö±ÈëÉäµÄÁ£×Ó×öÔÈËÙÔ²ÖÜÔ˶¯µÄ·½ÏòÏà·´£®Ô˶¯¹ì¼£¾ßÓжԳÆÐÔ£®ÓÉÌâÒâÖª´Å³¡¿í¶ÈdµÄ±í´ïʽ¿ÉÒÔ¿´³ö°ë¾¶Óë¾àÀëd£¬ÔÙÓɼ¸ºÎ¹Øϵ¹ØϵÕÒµ½Á£×ÓÔÚÁ½¸ö´Å³¡ÇøÓòÄÚƫתµÄ½Ç¶È£¬´Ó¶øÄÜÇó³ö·³ÌºÍλÒÆ£®
£¨3£©ÓÉ·ÖÎöÖª£ºÕýµçºÉ´¹Ö±ÓÚÇøÓò¢òµÄÉϱ߽羹ýO¡äµã£¬¼´Ó븺Á£×Ó²úÉúµÄµç³¡´¹Ö±£¬ÕýµçºÉÊܵ½µÄ¿âÂØÁ¦Îª$F=\frac{kQq}{{l}^{2}}=\frac{m{{v}_{0}}^{2}}{l}$£¬ËùÒÔÕýµçºÉ½«ÈÆNµã×öÔÈËÙÔ²ÖÜÔ˶¯£¬×ª¹ý°ëȦºóÔٴλص½¢òÇøµÄÉϱßÔµ£¬½øÈë¢òÇøºÍ¢ñÇø·Ö±ð×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÔ˶¯µÄ¶Ô³ÆÐÔºÍÏà¹Ø¼¸ºÎ¹Øϵ£¬ÄÜÇó³öÁ£×Ó´ÓOµãµ½PµãËùÓõÄʱ¼ä¼°O¡¢PÁ½µã¼äµÄ¾àÀ룮
½â´ð ½â£º£¨1£©ÓÉ$qB{v}_{0}=\frac{m{{v}_{0}}^{2}}{R}$µÃ¹ìµÀ°ë¾¶Îª£º$R=\frac{m{v}_{0}}{qB}$
£¨2£©ÓÉÌâÒâÖª£ºR=2d£¬
ËùÒÔÁ£×ÓÔڴų¡ÖÐƫת½Ç¶È£º$¦È=30¡ã=\frac{¦Ð}{6}$
Ô˶¯¹ì¼£µÄ³¤¶È£º$s=2R¦È=\frac{¦Ðm{v}_{0}}{3qB}$
λÒƵĴóС£ºx=4Rsin15¡ã=4Rsin£¨45¡ã-30¡ã£©=$\frac{£¨\sqrt{6}-\sqrt{2}£©m{v}_{0}}{qB}$
£¨3£©ÓÉ·ÖÎöÖª£ºÕýµçºÉ´¹Ö±ÓÚÇøÓò¢òµÄÉϱ߽羹ýO¡äµã£¬¼´Ó븺Á£×Ó²úÉúµÄµç³¡´¹
Ö±£¬ÕýµçºÉÊܵ½µÄ¿âÂØÁ¦Îª$F=\frac{kQq}{{L}^{2}}=\frac{m{{v}_{0}}^{2}}{L}$£¬ËùÒÔÕýµçºÉ½«ÈÆNµã×öÔÈËÙÔ²ÖÜÔ˶¯£®
Ôڴų¡ÖÐÔ˶¯ÖÜÆÚ£º${T}_{1}=\frac{2¦Ðm}{qB}$
Ôڴų¡ÖÐÔ˶¯¶ÔÓ¦µÄ×ܽǶȣº$¦Á=4¦È=\frac{2¦Ð}{3}$
Ôڴų¡ÖÐÔ˶¯µÄ×Üʱ¼ä£º${t}_{1}=\frac{¦Á}{2¦Ð}{T}_{1}=\frac{2¦Ðm}{3qB}$
Ôڵ糡ÖÐÔ˶¯ÖÜÆÚ£º${T}_{2}=\frac{2¦ÐL}{{v}_{0}}$
Ôڵ糡ÖÐÔ˶¯Ê±¼ä£º${t}_{2}=\frac{{T}_{2}}{2}=\frac{¦ÐL}{{v}_{0}}$
ÕýµçºÉ´ÓOµãµ½PµãµÄʱ¼ä£º$t={t}_{1}+{t}_{2}=\frac{2¦Ðm}{3qB}+\frac{¦ÐL}{{v}_{0}}$
ÕýµçºÉ´ÓOµãµ½O¡äµãµÄ¹ý³ÌÖÐÑØƽÐÐÓڱ߽çÏß·½ÏòÆ«ÒƵľàÀ룺
${x}_{1}=2£¨R-Rcos30¡ã£©=£¨2-\sqrt{3}£©R$
µ±L¡Ýx1 ʱ£¨Èçͼ¼×Ëùʾ£©£¬O¡¢PÁ½µã¼äµÄ¾àÀëΪ£º
${l}_{OP}=2£¨L-{x}_{1}£©=2[L-\frac{£¨2-\sqrt{3}£©m{v}_{0}}{qB}]$
µ±L£¼x1 ʱ£¨ÈçͼÒÒËùʾ£©£¬O¡¢PÁ½µãµÄ¾àÀëΪ£º
${l}_{OP}=2£¨{x}_{1}-L£©=2[\frac{£¨2-\sqrt{3}£©m{v}_{0}}{qB}-L]$
´ð£º£¨1£©Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ¹ìµÀ°ë¾¶$\frac{m{v}_{0}}{qB}$£®
£¨2£©Á£×ÓÔÚOÓëO¡äÖ®¼äÔ˶¯¹ì¼£µÄ³¤¶ÈΪ$\frac{¦Ðm{v}_{0}}{3qB}$£¬Î»ÒƵĴóС$\frac{£¨\sqrt{6}-\sqrt{2}£©m{v}_{0}}{qB}$£®
£¨3£©Á£×Ó´ÓOµãµ½PµãËùÓõÄʱ¼äΪ$\frac{2¦Ðm}{3qB}+\frac{¦ÐL}{{v}_{0}}$£¬O¡¢PÁ½µã¼äµÄ¾àÀ룺
¢Ùµ±L¡Ýx1 ʱ£¬O¡¢PÁ½µã¼äµÄ¾àÀëΪ£º${l}_{OP}=2£¨L-{x}_{1}£©=2[L-\frac{£¨2-\sqrt{3}£©m{v}_{0}}{qB}]$£»
¢Úµ±L£¼x1 ʱ£¬O¡¢PÁ½µãµÄ¾àÀëΪ£º${l}_{OP}=2£¨{x}_{1}-L£©=2[\frac{£¨2-\sqrt{3}£©m{v}_{0}}{qB}-L]$£®
µãÆÀ ±¾ÌâµÄö¦µãÔÚÓÚ£º¢ÙÁ£×ÓÔÚ¢ñ¡¢¢òÔ˶¯×öÔÈËÙÔ²ÖÜÔ˶¯ÓÉÓÚת¶¯·½ÏòÏà·´£¬ËùÒÔ¾ßÓжԳÆÐÔ£¬ÇÒÓйØϵR=2d£¬ÕâΪºóÐø¼ÆËãÌṩ·½±ã£®¢ÚÓÉÓÚNµãµÄ¸ºµçºÉËù´øµçºÉÁ¿µÄ¾ø¶ÔֵΪ$Q=\frac{Lm{{v}_{0}}^{2}}{kq}$£¬Ôòq¡¢QÖ®¼äµÄ¿âÂØÁ¦$F=\frac{kQq}{{L}^{2}}=\frac{m{{v}_{0}}^{2}}{L}$£¬¸ÕºÃʹqÈÆNµã×ö°ë¾¶ÎªLµÄÔÈËÙÔ²ÖÜÔ˶¯£¬ÕâÑùÕû¸öÔ˶¯¹ì¼£¾Í·Ç³£¶Ô³Æ£¬Ê±¼äÓë¾àÀëºÜÈÝÒ×Çó³ö£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | СÇòƽºâʱ£¬ÐüÏßÓëÊúÖ±·½Ïò¼Ð½ÇµÄÕýÏÒֵΪ$\frac{qE}{mg}$ | |
B£® | Èô¼ô¶ÏÐüÏߣ¬ÔòСÇò×öÔȼÓËÙÖ±ÏßÔ˶¯ | |
C£® | Èô¼ô¶ÏÐüÏߣ¬ÔòСÇò×öÇúÏßÔ˶¯ | |
D£® | Èô¼ô¶ÏÐüÏߣ¬ÔòСÇò×öÔÈËÙÔ˶¯ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | µ¼Ìå°ôµÄa¶ËµçÊƱÈb¶ËµçÊÆ¸ß | |
B£® | ab°ôÔÚ´ïµ½Îȶ¨×´Ì¬Ç°×ö¼ÓËÙ¶ÈÔö¼ÓµÄ¼ÓËÙÔ˶¯ | |
C£® | ab°ôÏ»¬µ½Îȶ¨×´Ì¬Ê±£¬½ðÊô°ôµÄËÙ¶Èv=$\frac{mgRsin¦È}{{B}^{2}{L}^{2}}$ | |
D£® | Èô»»³ÉÒ»¸ùÖÊÁ¿ÎªÔÀ´2±¶µÄµ¼Ìå°ô£¬ÆäËûÌõ¼þ²»±ä£¬Ôòab°ôÏ»¬µ½Îȶ¨×´Ì¬Ê±£¬µç×èRµÄµç¹¦Âʽ«±äΪÔÀ´µÄ2±¶ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ¼×ÎïÌåËùÊܺÏÁ¦²»¶Ï±ä»¯ | B£® | 2sÄ©ÒÒÎïÌåËٶȴﵽ×î´ó | ||
C£® | 2sÄ©ÒÒÎïÌåËÙ¶ÈΪ0 | D£® | 2sÄ©ÒÒÎïÌå¸Ä±äÔ˶¯·½Ïò | ||
E£® | ¼×ÎïÌåµÄËٶȲ»¶Ï¼õС |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\sqrt{2a{s}_{0}}$ | B£® | $\sqrt{2{¦Ì}_{1}g{s}_{0}}$ | C£® | $\sqrt{2{¦Ì}_{2}g{s}_{0}}$ | D£® | $\sqrt{£¨{¦Ì}_{1}+{¦Ì}_{2}£©g{s}_{0}}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ´Å³¡¾ùÔȼõС£¬´Å³¡±ä»¯ÂÊ$\frac{¡÷B}{¡÷t}$=$\frac{U}{nS}$£¬ÏßȦµÄµç×èr=$\frac{{U}_{0}}{{I}_{0}}$ | |
B£® | ´Å³¡¾ùÔȼõС£¬´Å³¡±ä»¯ÂÊ$\frac{¡÷B}{¡÷t}$=$\frac{{U}_{0}}{nS}$£¬ÏßȦµÄµç×èr=$\frac{{U}_{0}-U}{{I}_{0}}$ | |
C£® | ´Å³¡¾ùÔÈÔö´ó£¬´Å³¡±ä»¯ÂÊ$\frac{¡÷B}{¡÷t}$=$\frac{U}{nS}$£¬ÏßȦµÄµç×èr=$\frac{{U}_{0}}{{I}_{0}}$ | |
D£® | ´Å³¡¾ùÔÈÔö´ó£¬´Å³¡±ä»¯ÂÊ$\frac{¡÷B}{¡÷t}$=$\frac{{U}_{0}}{nS}$£¬ÏßȦµÄµç×èr=$\frac{{U}_{0}-U}{{I}_{0}}$ |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com