9£®ÈçͼËùʾ£¬Õæ¿ÕÖÐÇøÓòIºÍÇøÓò¢òÄÚ´æÔÚ×ÅÓëÖ½Ãæ´¹Ö±µÄ·½ÏòÏà·´µÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶È´óС¾ùΪB£®ÔÚÇøÓòIIµÄÉϱ߽çÏßÉϵÄNµã¹Ì¶¨Ò»¸ºµÄµãµçºÉ£¬²¢²ÉÈ¡´ëʩʹֻ֮¶ÔÇøÓòIIÒÔÉÏ¿Õ¼ä²úÉúÓ°Ï죮һ´øÕýµçµÄÁ£×ÓÖÊÁ¿Îªm£¬µçºÉÁ¿Îªq£¬×ÔÇøÓòIϱ߽çÏßÉϵÄOµãÒÔËÙ¶Èv0´¹Ö±Óڴų¡±ß½ç¼°´Å³¡·½ÏòÉäÈë´Å³¡£¬¾­¹ýÒ»¶Îʱ¼äÁ£×Óͨ¹ýÇøÓò¢ò±ß½çÉϵÄO'µã£¬×îÖÕÓÖ´ÓÇøÓòIϱ߽çÉϵÄPµãÉä³ö£®Í¼ÖÐN¡¢PÁ½µã¾ùδ»­³ö£¬µ«ÒÑÖªNµãÔÚO¡äµãµÄÓÒ·½£¬ÇÒNµãÓëO¡äµãÏà¾àL£®ÇøÓòIºÍ¢òµÄ¿í¶ÈΪd=$\frac{m{v}_{0}}{2qB}$£¬Á½ÇøÓòµÄ³¤¶È×ã¹»´ó£®NµãµÄ¸ºµçºÉËù´øµçºÉÁ¿µÄ¾ø¶ÔֵΪQ=$\frac{Lm{v}_{0}^{2}}{kq}$£¨ÆäÖÐkΪ¾²µçÁ¦³£Á¿£©£®²»¼ÆÁ£×ÓµÄÖØÁ¦£¬Çó£º
£¨1£©Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ¹ìµÀ°ë¾¶£»
£¨2£©Á£×ÓÔÚOÓëO¡äÖ®¼äÔ˶¯¹ì¼£µÄ³¤¶ÈºÍλÒƵĴóС£»
£¨3£©Á£×Ó´ÓOµãµ½PµãËùÓõÄʱ¼ä¼°O¡¢PÁ½µã¼äµÄ¾àÀ룮

·ÖÎö £¨1£©ÓÉÂåÂØ×ÈÁ¦ÌṩÏòÐÄÁ¦¿ÉÇóµÃ°ë¾¶¹«Ê½£®
£¨2£©ÓÉÓÚÇøÓò¢ñºÍ¢ò´Å³¡µÄ´óСÏàµÈ·½ÏòÏà·´£¬ËùÒÔ´ÓOµã´¹Ö±ÈëÉäµÄÁ£×Ó×öÔÈËÙÔ²ÖÜÔ˶¯µÄ·½ÏòÏà·´£®Ô˶¯¹ì¼£¾ßÓжԳÆÐÔ£®ÓÉÌâÒâÖª´Å³¡¿í¶ÈdµÄ±í´ïʽ¿ÉÒÔ¿´³ö°ë¾¶Óë¾àÀëd£¬ÔÙÓɼ¸ºÎ¹Øϵ¹ØϵÕÒµ½Á£×ÓÔÚÁ½¸ö´Å³¡ÇøÓòÄÚƫתµÄ½Ç¶È£¬´Ó¶øÄÜÇó³ö·³ÌºÍλÒÆ£®
£¨3£©ÓÉ·ÖÎöÖª£ºÕýµçºÉ´¹Ö±ÓÚÇøÓò¢òµÄÉϱ߽羭¹ýO¡äµã£¬¼´Ó븺Á£×Ó²úÉúµÄµç³¡´¹Ö±£¬ÕýµçºÉÊܵ½µÄ¿âÂØÁ¦Îª$F=\frac{kQq}{{l}^{2}}=\frac{m{{v}_{0}}^{2}}{l}$£¬ËùÒÔÕýµçºÉ½«ÈÆNµã×öÔÈËÙÔ²ÖÜÔ˶¯£¬×ª¹ý°ëȦºóÔٴλص½¢òÇøµÄÉϱßÔµ£¬½øÈë¢òÇøºÍ¢ñÇø·Ö±ð×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÔ˶¯µÄ¶Ô³ÆÐÔºÍÏà¹Ø¼¸ºÎ¹Øϵ£¬ÄÜÇó³öÁ£×Ó´ÓOµãµ½PµãËùÓõÄʱ¼ä¼°O¡¢PÁ½µã¼äµÄ¾àÀ룮

½â´ð ½â£º£¨1£©ÓÉ$qB{v}_{0}=\frac{m{{v}_{0}}^{2}}{R}$µÃ¹ìµÀ°ë¾¶Îª£º$R=\frac{m{v}_{0}}{qB}$
£¨2£©ÓÉÌâÒâÖª£ºR=2d£¬
  ËùÒÔÁ£×ÓÔڴų¡ÖÐƫת½Ç¶È£º$¦È=30¡ã=\frac{¦Ð}{6}$
  Ô˶¯¹ì¼£µÄ³¤¶È£º$s=2R¦È=\frac{¦Ðm{v}_{0}}{3qB}$
  λÒƵĴóС£ºx=4Rsin15¡ã=4Rsin£¨45¡ã-30¡ã£©=$\frac{£¨\sqrt{6}-\sqrt{2}£©m{v}_{0}}{qB}$
£¨3£©ÓÉ·ÖÎöÖª£ºÕýµçºÉ´¹Ö±ÓÚÇøÓò¢òµÄÉϱ߽羭¹ýO¡äµã£¬¼´Ó븺Á£×Ó²úÉúµÄµç³¡´¹
  Ö±£¬ÕýµçºÉÊܵ½µÄ¿âÂØÁ¦Îª$F=\frac{kQq}{{L}^{2}}=\frac{m{{v}_{0}}^{2}}{L}$£¬ËùÒÔÕýµçºÉ½«ÈÆNµã×öÔÈËÙÔ²ÖÜÔ˶¯£®
  Ôڴų¡ÖÐÔ˶¯ÖÜÆÚ£º${T}_{1}=\frac{2¦Ðm}{qB}$
  Ôڴų¡ÖÐÔ˶¯¶ÔÓ¦µÄ×ܽǶȣº$¦Á=4¦È=\frac{2¦Ð}{3}$
  Ôڴų¡ÖÐÔ˶¯µÄ×Üʱ¼ä£º${t}_{1}=\frac{¦Á}{2¦Ð}{T}_{1}=\frac{2¦Ðm}{3qB}$
  Ôڵ糡ÖÐÔ˶¯ÖÜÆÚ£º${T}_{2}=\frac{2¦ÐL}{{v}_{0}}$
  Ôڵ糡ÖÐÔ˶¯Ê±¼ä£º${t}_{2}=\frac{{T}_{2}}{2}=\frac{¦ÐL}{{v}_{0}}$
  ÕýµçºÉ´ÓOµãµ½PµãµÄʱ¼ä£º$t={t}_{1}+{t}_{2}=\frac{2¦Ðm}{3qB}+\frac{¦ÐL}{{v}_{0}}$
  ÕýµçºÉ´ÓOµãµ½O¡äµãµÄ¹ý³ÌÖÐÑØƽÐÐÓڱ߽çÏß·½ÏòÆ«ÒƵľàÀ룺
${x}_{1}=2£¨R-Rcos30¡ã£©=£¨2-\sqrt{3}£©R$ 
  µ±L¡Ýx1  ʱ£¨Èçͼ¼×Ëùʾ£©£¬O¡¢PÁ½µã¼äµÄ¾àÀëΪ£º
${l}_{OP}=2£¨L-{x}_{1}£©=2[L-\frac{£¨2-\sqrt{3}£©m{v}_{0}}{qB}]$
  µ±L£¼x1 Ê±£¨ÈçͼÒÒËùʾ£©£¬O¡¢PÁ½µãµÄ¾àÀëΪ£º
${l}_{OP}=2£¨{x}_{1}-L£©=2[\frac{£¨2-\sqrt{3}£©m{v}_{0}}{qB}-L]$
´ð£º£¨1£©Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ¹ìµÀ°ë¾¶$\frac{m{v}_{0}}{qB}$£®
£¨2£©Á£×ÓÔÚOÓëO¡äÖ®¼äÔ˶¯¹ì¼£µÄ³¤¶ÈΪ$\frac{¦Ðm{v}_{0}}{3qB}$£¬Î»ÒƵĴóС$\frac{£¨\sqrt{6}-\sqrt{2}£©m{v}_{0}}{qB}$£®
£¨3£©Á£×Ó´ÓOµãµ½PµãËùÓõÄʱ¼äΪ$\frac{2¦Ðm}{3qB}+\frac{¦ÐL}{{v}_{0}}$£¬O¡¢PÁ½µã¼äµÄ¾àÀ룺
¢Ùµ±L¡Ýx1  ʱ£¬O¡¢PÁ½µã¼äµÄ¾àÀëΪ£º${l}_{OP}=2£¨L-{x}_{1}£©=2[L-\frac{£¨2-\sqrt{3}£©m{v}_{0}}{qB}]$£»
¢Úµ±L£¼x1 Ê±£¬O¡¢PÁ½µãµÄ¾àÀëΪ£º${l}_{OP}=2£¨{x}_{1}-L£©=2[\frac{£¨2-\sqrt{3}£©m{v}_{0}}{qB}-L]$£®

µãÆÀ ±¾ÌâµÄö¦µãÔÚÓÚ£º¢ÙÁ£×ÓÔÚ¢ñ¡¢¢òÔ˶¯×öÔÈËÙÔ²ÖÜÔ˶¯ÓÉÓÚת¶¯·½ÏòÏà·´£¬ËùÒÔ¾ßÓжԳÆÐÔ£¬ÇÒÓйØϵR=2d£¬ÕâΪºóÐø¼ÆËãÌṩ·½±ã£®¢ÚÓÉÓÚNµãµÄ¸ºµçºÉËù´øµçºÉÁ¿µÄ¾ø¶ÔֵΪ$Q=\frac{Lm{{v}_{0}}^{2}}{kq}$£¬Ôòq¡¢QÖ®¼äµÄ¿âÂØÁ¦$F=\frac{kQq}{{L}^{2}}=\frac{m{{v}_{0}}^{2}}{L}$£¬¸ÕºÃʹqÈÆNµã×ö°ë¾¶ÎªLµÄÔÈËÙÔ²ÖÜÔ˶¯£¬ÕâÑùÕû¸öÔ˶¯¹ì¼£¾Í·Ç³£¶Ô³Æ£¬Ê±¼äÓë¾àÀëºÜÈÝÒ×Çó³ö£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÖÊÁ¿Îª4kgµÄÎïÌå·ÅÔÚÓëˮƽÃæ³É30¡ã½ÇµÄбÃæÉÏ£¬Óɾ²Ö¹¿ªÊ¼ÑØбÃæÏ»¬£®ÎïÌåÑØбÃæÏ»¬2mʱ£¬Ëٶȴﵽ3m/s£®Õâ¸ö¹ý³ÌÖУ®ÓÉĦ²Á²úÉúµÄÈÈÁ¿ÊÇ27.2J£®£¨gÈ¡9.8m/s2£¬±£ÁôһλС·ó£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÈçͼËùʾ£¬ÐüÏßϹÒ×ÅÒ»¸ö´øÕýµçµÄСÇò£¬ËüµÄÖÊÁ¿Îªm£¬µçºÉÁ¿Îªq£¬Õû¸ö×°Öô¦ÓÚˮƽÏòÓÒµÄÔÈÇ¿µç³¡ÖУ¬µç³¡Ç¿¶ÈΪE£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Ð¡Çòƽºâʱ£¬ÐüÏßÓëÊúÖ±·½Ïò¼Ð½ÇµÄÕýÏÒֵΪ$\frac{qE}{mg}$
B£®Èô¼ô¶ÏÐüÏߣ¬ÔòСÇò×öÔȼÓËÙÖ±ÏßÔ˶¯
C£®Èô¼ô¶ÏÐüÏߣ¬ÔòСÇò×öÇúÏßÔ˶¯
D£®Èô¼ô¶ÏÐüÏߣ¬ÔòСÇò×öÔÈËÙÔ˶¯

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

17£®ÈçͼËùʾ£¬¼ä¾àΪL£¬×ã¹»³¤µÄ¹â»¬µ¼¹ìÇãб·ÅÖã¬ÓëˮƽÃæÇã½ÇΪ¦È£¬ÆäÉ϶ËÁ¬½ÓÒ»¸ö¶¨Öµµç×èR£¬ÔÈÇ¿´Å³¡´Å¸ÐӦǿ¶ÈΪB£®·½Ïò´¹Ö±ÓÚµ¼¹ìËùÔÚƽÃ棬½«ÖÊÁ¿ÎªmµÄ½ðÊô°ôabÔÚµ¼¹ìÉÏÎÞ³õËÙ¶ÈÊÍ·Å£¬µ±ab°ôÏ»¬µ½Îȶ¨×´Ì¬Ê±£¬µç×èRµÄµç¹¦ÂÊΪP£»µ¼¹ìºÍ½ðÊô°ôµÄµç×è¾ù²»¼Æ£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£®ÏÂÁÐÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®µ¼Ìå°ôµÄa¶ËµçÊƱÈb¶ËµçÊƸß
B£®ab°ôÔÚ´ïµ½Îȶ¨×´Ì¬Ç°×ö¼ÓËÙ¶ÈÔö¼ÓµÄ¼ÓËÙÔ˶¯
C£®ab°ôÏ»¬µ½Îȶ¨×´Ì¬Ê±£¬½ðÊô°ôµÄËÙ¶Èv=$\frac{mgRsin¦È}{{B}^{2}{L}^{2}}$
D£®Èô»»³ÉÒ»¸ùÖÊÁ¿ÎªÔ­À´2±¶µÄµ¼Ìå°ô£¬ÆäËûÌõ¼þ²»±ä£¬Ôòab°ôÏ»¬µ½Îȶ¨×´Ì¬Ê±£¬µç×èRµÄµç¹¦Âʽ«±äΪԭÀ´µÄ2±¶

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÎïÌå¼×¡¢ÒÒÔ­À´¾²Ö¹Óڹ⻬ˮƽÃæÉÏ£®´Ót=0ʱ¿Ì¿ªÊ¼£¬¼×ÑØˮƽÃæ×öÖ±ÏßÔ˶¯£¬Î»ÒÆxºÍʱ¼äƽ·½t2µÄ¹ØϵͼÏóÈçͼ¼×£»ÒÒÊܵ½ÈçͼÒÒËùʾµÄˮƽÀ­Á¦FµÄ×÷Óã®ÔòÔÚ0¡«4sµÄʱ¼äÄÚ£¨¡¡¡¡£©
A£®¼×ÎïÌåËùÊܺÏÁ¦²»¶Ï±ä»¯B£®2sÄ©ÒÒÎïÌåËٶȴﵽ×î´ó
C£®2sÄ©ÒÒÎïÌåËÙ¶ÈΪ0D£®2sÄ©ÒÒÎïÌå¸Ä±äÔ˶¯·½Ïò
E£®¼×ÎïÌåµÄËٶȲ»¶Ï¼õС   

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÈçͼËùʾ£¬¸ÖÌú¹¹¼þA¡¢Bµþ·ÅÔÚ¿¨³µµÄˮƽµ×°åÉÏ£¬¿¨³µµ×°åºÍB¼ä¶¯Ä¦²ÁÒòÊýΪ¦Ì1£¬A¡¢B¼ä¶¯Ä¦²ÁÒòÊýΪ¦Ì2£¬¦Ì1£¾¦Ì2£¬¿¨³µÉ²³µµÄ×î´ó¼ÓËÙ¶ÈΪa£¬a£¾¦Ì1g£¬¿ÉÒÔÈÏΪ×î´ó¾²Ä¦²ÁÁ¦Ó뻬¶¯Ä¦²ÁÁ¦´óСÏàµÈ£®¿¨³µÑØƽֱ¹«Â·ÐÐʻ;ÖÐÓöµ½½ô¼±Çé¿öʱ£¬ÒªÇóÆäɲ³µºóÔÚs0¾àÀëÄÚÄÜ°²È«Í£Ï£¬Ôò¿¨³µÐÐÊ»µÄËٶȲ»Äܳ¬¹ý£¨¡¡¡¡£©
A£®$\sqrt{2a{s}_{0}}$B£®$\sqrt{2{¦Ì}_{1}g{s}_{0}}$C£®$\sqrt{2{¦Ì}_{2}g{s}_{0}}$D£®$\sqrt{£¨{¦Ì}_{1}+{¦Ì}_{2}£©g{s}_{0}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Ä³´Î¶ÔÐÂÄÜÔ´Æû³µÐÔÄܽøÐеIJâÁ¿ÖУ¬Æû³µÔÚˮƽ²âÊÔƽ̨ÉÏÓɾ²Ö¹¿ªÊ¼ÑØÖ±ÏßÔ˶¯£¬Æû³µËùÊܶ¯Á¦Ëæʱ¼ä±ä»¯¹ØϵÈçͼ1Ëùʾ£¬¶øËٶȴ«¸ÐÆ÷Ö»´«»ØµÚ10sÒÔºóµÄÊý¾Ý£¨Èçͼ2Ëùʾ£©£®ÒÑÖªÆû³µÖÊÁ¿Îª1000kg£¬Æû³µËùÊÜ×èÁ¦ºã¶¨£®Çó£º
£¨1£©Æû³µËùÊÜ×èÁ¦µÄ´óС£»
£¨2£©10sÄ©Æû³µËٶȵĴóС£»
£¨3£©Ç°20sÆû³µÎ»ÒƵĴóС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÈçͼËùʾ£¬ÏßȦÃæ»ýS=1¡Á10-3m2£¬ÔÑÊýn=100£¬Á½¶ËµãÁ¬½ÓÒ»µçÈÝÆ÷£¬ÆäµçÈÝC=30 ¦ÌF£®ÏßȦÖдų¡µÄ´Å¸ÐӦǿ¶È°´$\frac{¡÷B}{¡÷t}$=0.1T/sÔö¼Ó£¬´Å³¡·½Ïò´¹Ö±ÏßȦƽÃæÏòÀÄÇôµçÈÝÆ÷Ëù´øµçºÉÁ¿Îª$3¡Á1{0}_{\;}^{-7}C$µçÈÝÆ÷µÄ¼«°åa´øÕýµç£¨Ìî¡°Õý¡±»ò¡°¸º¡±£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èç¼×ͼËùʾ£¬nÔÑÃæ»ýΪSµÄÏßȦ´¦ÔÚÊúÖ±ÏòϵÄÔÈÇ¿´Å³¡ÖУ¬¸Ã´Å³¡µÄ´Å¸ÐӦǿ¶ÈËæʱ¼ä¾ùÔȱ仯£®S±ÕºÏºó£¬Òƶ¯»¬¶¯±ä×èÆ÷µÄ»¬Æ¬£¬²â³ö¶à×éU¡¢IÖµ£¬Ãè³öµçÔ´Á½¶ËµçѹËæµçÁ÷I±ä»¯µÄͼÏóÈçÒÒͼ£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®´Å³¡¾ùÔȼõС£¬´Å³¡±ä»¯ÂÊ$\frac{¡÷B}{¡÷t}$=$\frac{U}{nS}$£¬ÏßȦµÄµç×èr=$\frac{{U}_{0}}{{I}_{0}}$
B£®´Å³¡¾ùÔȼõС£¬´Å³¡±ä»¯ÂÊ$\frac{¡÷B}{¡÷t}$=$\frac{{U}_{0}}{nS}$£¬ÏßȦµÄµç×èr=$\frac{{U}_{0}-U}{{I}_{0}}$
C£®´Å³¡¾ùÔÈÔö´ó£¬´Å³¡±ä»¯ÂÊ$\frac{¡÷B}{¡÷t}$=$\frac{U}{nS}$£¬ÏßȦµÄµç×èr=$\frac{{U}_{0}}{{I}_{0}}$
D£®´Å³¡¾ùÔÈÔö´ó£¬´Å³¡±ä»¯ÂÊ$\frac{¡÷B}{¡÷t}$=$\frac{{U}_{0}}{nS}$£¬ÏßȦµÄµç×èr=$\frac{{U}_{0}-U}{{I}_{0}}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸