精英家教网 > 高中物理 > 题目详情
2.下列说法正确的是(  )
A.经典电磁理论无法解释氢原子的分立线状光谱
B.聚变又叫热核反应,太阳就是一个巨大的热核反应堆
C.根据玻尔理论,氢原子在辐射光子的同时,轨道也在连续地减小
D.某放射性原子核经过2次a衰变和一次β衰变,核内质子数减少3个
E.用能量等于氘核结合能的光子照射静止氘核,可以使氘核分解为一个质子和一个中子

分析 太阳辐射的能量主要来自太阳内部的聚变反应,根据波尔理论,氢原子在辐射光子的同时,轨道呈量子化,α衰变生成氦原子核,β衰变生成负电子,质子数增加1个,是因为一个中子转化成质子而释放出的电子;玻尔的氢原子模型,成功引入了量子化假说

解答 解:A、经典电磁理论无法解释氢原子的分立线状光谱,引入玻尔的原子理论可以解释,所以A正确.
B、聚变又叫热核反应,太阳就是一个巨大的热核反应堆,故B正确.
C、根据玻尔理论,氢原子在辐射光子的同时,轨道也在减小,但不连续,轨道量子化,故C错误.
D、放射性原子核经过2次α衰变,核内质子数减少4,再经过一次β衰变,核内质子数增加1,故核内质子数共减少3个,D正确.
E、核子结合成原子核与原子核分解为核子是逆过程,质量的变化相等,能量变化也相等,故用能量等于氘核结合能的光子照射静止氘核,还要另给它们分离时所需要的足够的动能(光子方向有动量),所以不可能使氘核分解为一个质子和一个中子,故E错误;
故选:ABD

点评 本题考查了有关衰变中三种射线的性质,以及β衰变的本质,掌握比结合能与结合能的区别,对于类似基础知识,注意加强记忆,平时注意积累.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

12.电子感应加速器是利用感生电场使电子加速的设备.它的基本原理如图甲所示(上部分为俯视图,下部分为真空室的俯视图)上、下为电磁铁的两个磁极,磁极之间有一个环形真空室,电子在真空中做圆周运动.
(1)如果俯视时电子沿逆时针方向运动,当电磁铁线圈电流的方向与图示方向一致时,电流的大小应该怎样变化才能使电子加速?
(2)为了约束加速电子在同一轨道上做圆周运动,电子感应加速器还需要加上“轨道约束”磁场,其原理如图乙所示.两个同心柱面,内圆柱面标记为r,内圆柱面内有均匀的“加速磁场”B1,方向垂直纸面向外.另外,在两柱面之间有垂直纸面向外的均匀“轨道约束”磁场B2
①若“加速磁场”稳定,“轨道约束”磁场为匀强磁场时,要使质量为m,电荷量为e的电子在二柱面之间贴近圆柱面处做速率为v的匀速圆周运动(圆心为O点,半径为r),求B2的大小;
②若“加速磁场”变化,以O为圆心,r为半径的圆周上将产生电场,该感生电场使电子加速.若圆周上每一点的感生电场方向沿轨道的切向,大小为$\frac{E}{2πr}$(E等于该圆周上一假想闭合回路所产生的感应电动势),若图乙表示装置中的“加速磁场”B1随时间均匀变化,且满足$\frac{△{B}_{2}}{△t}$=k(常数),为使该电子仍能保持在同一圆周上运动(圆心为O点,半径为r),B2应以多大的变化率$\frac{△{B}_{2}}{△t}$变化.(不考虑相对论效应)

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

13.在匀强磁场中,一矩形金属线框绕与磁感线垂直的轴匀速转动,如图1所示.产生的感应电动势如图2所示,则(  )
A.t=0.01s时线框平面与磁场B垂直
B.t=0.005s时线框的磁通量变化率为零
C.线框产生的交变电动势有效值为311V
D.线框产生的交变电动势频率为100Hz

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

10.如图,是氢原子四个能级的示意图.当氢原子从n=4的能级跃迁到n=3的能级时,辐射出a光.当氢原子从n=3的能级跃迁到n=2的能级时,辐射出b光.则以下判断正确的是(  )
A.a光光子的能量大于b光光子的能量
B.a光的波长大于b光的波长
C.a光的频率大于b光的频率
D.在真空中a光的传播速度大于b光的传播速度

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

17.如图,质量为m的小球置于内部光滑的正方体盒子中,盒子的边长略大于球的直径.盒子在竖直平面内做半径为R、周期为2π$\sqrt{\frac{R}{g}}$的匀速圆周运动,重力加速度大小为g,则(  )
A.盒子运动到最高点时,小球对盒子底部压力为mg
B.盒子运动到最低点时,小球对盒子底部压力为2mg
C.盒子运动到最低点时,小球对盒子底部压力为6mg
D.盒子从最低点向最高点运动的过程中,球处于超重状态

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

7.如图所示,A、B是两个质量均为m的小球,小球A从静止开始沿倾角为30°的光滑斜面下滑,经tA时间到达斜面底端O,到达斜面底端O时动能为EkA,小球B从与A球等高处被水平抛出,经tB时间到达斜面底端O点,到达斜面底端O时动能为EkB,取g=10m/s2,则下列说法正确的是(  )
A.EkA=EkBB.EkA<EkBC.tA=tBD.tA<tB

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

14.某同学设计了如图1所示的装置来探究加速度与力的关系.弹簧秤固定在一合适的木板上,桌面的右边缘固定一支表面光滑的铅笔以代替定滑轮,细绳的两端分别与弹簧秤的挂钩和矿泉水瓶连接.在桌面上画出两条平行线MN、PQ,并测出间距d.开始时将木板置于MN处,现缓慢向瓶中加水,直到木板刚刚开始运动为止,记下弹簧秤的示数F0,以此表示滑动摩擦力的大小.再将木板放回原处并按住,继续向瓶中加水后,记下弹簧秤的示数F1,然后释放木板,并用秒表记下木板运动到PQ处的时间t.

(1)木板的加速度可以用d、t表示为a=$\frac{2d}{{t}^{2}}$;为了减小测量加速度的偶然误差可以采用的方法是(一种即可)保持F1不变,重复实验多次测量求平均值.
(2)改变瓶中水的质量重复实验,确定加速度a与弹簧秤示数F1的关系.如图2所示图象能表示该同学实验结果的是c.
(3)用加水的方法改变拉力的大小与挂钩码的方法相比,它的优点是bc.
a.可以改变滑动摩擦力的大小
b.可以更方便地获取多组实验数据
c.可以比较精确地测出摩擦力的大小
d.可以获得更大的加速度以提高实验精度.

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

11.某实验小组的同学想利用刻度尺(无其他测量仪器)测出小滑块与桌面的动摩擦因数μ,小华同学的设计如图.倾斜的木板通过一小段弧形轨道与桌面连接,从木板上某一位置释放小滑块,小滑块从木板上滑下后沿桌面滑行,最终垂直桌面边缘水平抛出.测出木板底部离桌面边缘的距离L,桌面离地高度H,小滑块的落地点到桌子边缘的水平距离x.改变倾斜的木板离桌子边缘的距离(不改变木板的倾斜程度),并保证每次从木板的同一位置释放小滑块.重复以上步骤进行多次测量并记录实验数据.
(1)保证每次从木板的同一位置释放小滑块的目的是保证每次滑到斜面底端具有相同的速度.
(2)利用图象法处理数据.若以L为纵轴,则应以x2为横轴,拟合直线.(在“x、$\frac{1}{x}$、x2、$\frac{1}{{x}^{2}}$”中选择填写)
(3)若图象横轴和纵轴上的截距分别为a和b,则求得μ=$\frac{a}{4bH}$.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

8.如图所示,某发电站通过燃烧煤来发电.发电站通过升压器、输电线和降压器把电能输送给生产和照明组成的用户,发电机输出功率是120kW,输出电压是240V,升压器原、副线圈的匝数之比为1:50,输电线的总电阻为10Ω,用户需要的电压为220V.则:
(1)输电线上损失的电功率为多少?
(2)降压器原、副线圈的匝数比为多少?

查看答案和解析>>

同步练习册答案