精英家教网 > 高中物理 > 题目详情
19.如图所示,在光滑水平面的左侧固定一竖直挡板,A球在水平面上静止放置,B球向左运动与A球发生正碰,B球碰撞前、后的速率之比为3:1,A球垂直撞向挡板,碰后原速率返回,两球刚好不发生第二次碰撞,A、B两球的质量之比为4:1,A、B碰撞前、后两球总动能之比为9:5.

分析 设开始时B的速度为v0,由题得出B与A碰撞后A与B的速度关系,然后由动量守恒定律即可求出质量关系,由动能的定义式即可求出动能关系.

解答 解:设开始时B的速度为v0,B球碰撞前、后的速率之比为3:1,A与挡板碰后原速率返回,两球刚好不发生第二次碰撞,所以碰撞后A与B的速度方向相反,大小相等,A的速度是$\frac{1}{3}{v}_{0}$,B的速度是$-\frac{1}{3}{v}_{0}$,选取向左为正方向,由动量守恒定律得:
${m}_{B}{v}_{0}={m}_{A}•\frac{1}{3}{v}_{0}-{m}_{B}•\frac{1}{3}{v}_{0}$
整理得:$\frac{{m}_{A}}{{m}_{B}}=\frac{4}{1}$
碰撞前的动能:${E}_{1}=\frac{1}{2}{m}_{B}{v}_{0}^{2}$
碰撞后的动能:${E}_{2}=\frac{1}{2}{m}_{A}•(\frac{1}{3}{v}_{0})^{2}+\frac{1}{2}{m}_{B}(-\frac{1}{3}{v}_{0})^{2}$=$\frac{5}{18}{m}_{B}{v}_{0}^{2}$
所以:$\frac{{E}_{1}}{{E}_{2}}=\frac{9}{5}$
故答案为:4:1,9:5

点评 该题考查水平方向的动量守恒定律,从题目给出的条件中判断出碰撞后A与B的速度方向相反,大小相等是解答的关键.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

9.在图甲中,理想变压器的原、副线圈匝数之比n1:n2=1:3,滑片P置于副线圈的中点.在图乙中,滑动变阻器最大阻值R0=6Ω,滑动触头P置于R0的中央.两电路的输入端都接交流u=20$\sqrt{2}$sin100πt(V)的正弦交流电,输出端各接一个阻值R=6Ω的定值电阻和理想交流电压表.两电压表的读数U1、U2分别为(  )
A.U1=30V,U2=8VB.U1=30V,U2=10VC.U1=60V,U2=8VD.U1=60V,U2=10V

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

10.如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图(b)所示,若重力加速度及图中的v0,v1,t1均为已知量,则可求出(  )
A.斜面的倾角B.物块的质量
C.物块与斜面间的动摩擦因数D.物块沿斜面向上滑行的最大高度

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

7.如图(a)所示,平行长直金属导轨水平放置,间距L=0.4m,导轨右端接有阻值R=1Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计.导轨间正方形区域abcd内有方向竖直向下的匀强磁场,bd连线与导轨垂直,长度也为L.从0时刻开始,磁感应强度B的大小随时间t变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1s后刚好进入磁场,若使棒在导轨上始终以速度v=1m/s做直线运动,求:

(1)棒进入磁场前,回路中的电动势E;
(2)棒在运动过程中受到的最大安培力F,以及棒通过三角形abd区域使电流i与时间t的关系式.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

14.未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示,当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是(  )
A.旋转舱的半径越大,转动的角速度就应越大
B.旋转舱的半径越大,转动的角速度就应越小
C.宇航员质量越大,旋转舱的角速度就应越大
D.宇航员质量越大,旋转舱的角速度就应越小

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

4.现代科学仪器常利用电场、磁场控制带电粒子的运动,真空中存在着如图所示的多层紧密相邻的匀强电场和匀强磁场,电场与磁场的宽度均为d,电场强度为E,方向水平向右;磁感应强度为B,方向垂直纸面向里.电场、磁场的边界互相平行且与电场方向垂直.一个质量为m、电荷量为q的带正电粒子在第1层电场左侧边界某处由静止释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射.

(1)求粒子在第2层磁场中运动时速度v2的大小与轨迹半径r2
(2)粒子从第n层磁场右侧边界穿出时,速度的方向与水平方向的夹角为θn,试求sinθn
(3)若粒子恰好不能从第n层磁场右侧边界穿出,试问在其他条件不变的情况下,也进入第n层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

11.甲同学准备做“验证机械能守恒定律”实验,乙同学准备做“探究加速度与力、质量的关系”实验.

(1)图1中A、B、C、D、E表示部分实验器材,甲同学需在图中选用的器材AB;乙同学需在图中选用的器材BDE(用字母表示)
(2)乙同学在实验室选齐所需要器材后,经正确操作获得如图2所示的两条纸带①和②,纸带①的加速度大(填“①”或“②”),其加速度大小为2.5m/s2

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

8.氧气瓶的容积是40L,其中氧气的压强是130atm,规定瓶内氧气压强降到10atm时就要重新充氧,有一个车间,每天需要用1atm的氧气400L,这瓶氧气能用几天?假定温度不变.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

18.如图所示,线圈工件加工车间的传送带不停地水平传送边长为L,质量为m,电阻为R的正方形线圈.在传送带的左端,线圈无初速地放在以恒定速度v匀速运动的传送带上,经过一段时间,达到与传送带相同的速度v,并通过一磁感应强度大小为B、方向竖直向上的匀强磁场,线圈与传送带始终保持相对静止.已知当一个线圈刚好开始匀速运动时,下一个线圈恰好放在传送带上;线圈匀速运动时,每两个线圈间保持距离L不变,匀强磁场的宽度为3L.求:

(1)每个线圈通过磁场区域产生的热量Q;
(2)在某个线圈加速的过程中,该线圈通过的距离s1和在这段时间里传送带通过的距离s2之比;
(3)传送带每传送一个线圈其电动机所消耗的电能E(不考虑电动机自身的能耗);
(4)当工件在传送带上持续传送的过程中,传送带传送工件的总功率P.

查看答案和解析>>

同步练习册答案