£¨1£©µç×ÓÔڵ糡ÖÐˮƽ·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬
Ôò£º4l=v
0nT£¬½âµÃ£ºT=
£¨n=1£¬2£¬3¡£©£¬
µç×ÓÔڵ糡ÖÐÔ˶¯×î´ó²àÏòλÒÆ£º
=2n?a()2£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº
a=£¬
½âµÃ£º
U0=£¨n=1£¬2£¬3¡£©£»
£¨2£©Á£×ÓÔ˶¯¹ì¼£ÈçͼËùʾ£º
ÓÉͼʾ¿ÉÖª£¬×î´óÇøÓòÔ²°ë¾¶Âú×㣺
rm2=(2l)2+(rm-l)2£¬½âµÃ£ºr
m=2.5l£¬
¶ÔÓÚ´øµçÁ£×Óµ±¹ì¼£°ë¾¶µÈÓڴų¡ÇøÓò°ë¾¶Ê±£¬´øµçÁ£×Ó½«»ã¾ÛÓÚÒ»µã£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº
qv0Bmin=£¬½âµÃ£º
Bmin=£¬
×îСÇøÓòÔ²°ë¾¶Îªr
n=0.5l£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº
qv0Bmax=£¬½âµÃ£º
Bmax=£»
£¨3£©Éèʱ¼äΪ¦Ó£¬
£¾¦Ó£¾0£¬Èôt=kT+¦ÓÇÒ
(£¾¦Ó£¾0)ʱµç×Ó½øÈëµç³¡£¬
Ôò£º
| y1=n[a(-¦Ó)2?2-a¦Ó2?2]=n[aT2-aT¦Ó]=- |
| |
£¬ÆäÖУ¨n=1£¬2£¬3¡£¬k=0£¬1£¬2£¬3¡£©£¬
Èô
t=(k+)T+¦ÓÇÒ
(£¾¦Ó£¾0)½øÈëµç³¡
Ôò£º
y2=-n[aT2-aT¦Ó]=(t-kT-T)-=-l£¬ÆäÖУ¨n=1£¬2£¬3¡£¬k=0£¬1£¬2£¬3¡£©£»
»ò£ºÈôµç×ÓÔÚt=kT+¦ÓÇÒ
(T£¾¦Ó£¾)½øÈëµç³¡Ê±£¬³öµç³¡µÄ×ܲàÒÆΪ£º
| y2=n[-a(T-¦Ó)2?2+a(¦Ó-)2] | =n[-aT2+aT¦Ó]=-l+ |
| |
£¬ÆäÖУ¨n=1£¬2£¬3¡£¬k=0£¬1£¬2£¬3¡£©£»
ÆäËû½â·¨£ºÈô
kT£¼t£¼kT+£¬Ôò
µç×ÓÑØ+y·½ÏòµÚÒ»´Î¼ÓËÙµÄʱ¼äΪ
-(t-kT)µç×ÓÑØ-y·½ÏòµÚÒ»´Î¼ÓËÙµÄʱ¼äΪt-kT
y={a[-(t-kT)]2-a(t-kT)2}?2n½âµÃ£º
y=naT2-naTt£¬ÆäÖÐ
aT2=£¬
aT=v0£¬
¡à
y=l-nv0t£¨n=1£¬2£¬3¡£¬k=0£¬1£¬2£¬3¡£©
Èô
kT+£¼t£¼kT+T£¬Ôò
µç×ÓÑØ-y·½ÏòµÚÒ»´Î¼ÓËÙµÄʱ¼äΪT-£¨t-kT£©
µç×ÓÑØ+y·½ÏòµÚÒ»´Î¼ÓËÙµÄʱ¼äΪ
t-kT-y={-a[T-(t-kT)]2+a(t-kT-)2}?2n½âµÃ£º
y=naT2-naTt£¬ÆäÖÐ
aT2=£¬
aT=v0£¬¡à
y=nv0t-l£¨n=1£¬2£¬3¡£¬k=0£¬1£¬2£¬3¡£©£»
´ð£º£¨1£©½»±äµçѹµÄÖÜÆÚT=
£¨n=1£¬2£¬3¡£©£¬µçѹ
U0=£¨n=1£¬2£¬3¡£©£»
£¨2£©Ëù¼Ó´Å³¡´Å¸ÐӦǿ¶ÈBµÄ×î´óÖµ
Bmax=£»×îСֵ
Bmin=£»
£¨3£©´ÓOµãÉäÈëµÄµç×Ó¸Õ³ö¼«°åʱµÄ²àÏòλÒÆΪ
-
ÆäÖУ¨n=1£¬2£¬3¡£¬k=0£¬1£¬2£¬3¡£©£¬»ò
-
l£¬ÆäÖУ¨n=1£¬2£¬3¡£¬k=0£¬1£¬2£¬3¡£©£®