精英家教网 > 高中物理 > 题目详情
11.绕地球做匀速圆周运动的卫星,离地面越近的卫星其(  )
A.加速度越小B.线速度越大C.角速度越小D.周期越小

分析 根据万有引力提供向心力,分析向心加速度、线速度、角速度、周期与轨道半径之间存在什么关系.

解答 解:人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、地球质量为M,有
$\frac{GMm}{{r}^{2}}$=ma=m$\frac{{v}^{2}}{r}$=mω2r=m$\frac{{4π}^{2}}{{T}^{2}}$r
解得:a=$\frac{GM}{{r}^{2}}$,v=$\sqrt{\frac{GM}{r}}$,ω=$\sqrt{\frac{GM}{{r}^{3}}}$,T=2π$\sqrt{\frac{{r}^{3}}{GM}}$,
可知r越小,向心加速度越大,线速度越大,角速度越大,周期越小.故AC错误,BD正确;
故选:BD.

点评 本题关键抓住万有引力提供向心力,先列式求解出线速度、角速度、周期和加速度的表达式,再进行讨论.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

4.一同学用游标卡尺测一根金属管的深度时,游标卡尺上的游标尺和主尺的相对位置如图甲所示,则这根金属管的深度是1.060cm;该同学又利用螺旋测微器测量一金属板的厚度为5.702mm,则图乙中可动刻度a、b处的数字分别是20、25.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

2.如图所示,质量m=1kg的小球用细线拴住,线长l=0.5m,细线所受拉力达到F=18N时就会被拉断.当小球从图地位置释放后摆到悬点的正下方时,细线恰好被拉断.若此时小球距水平地面的高度h=5m,重力加速度g=10m/s2,则小于落地处距地面上P点的距离为(P点在悬点的正下方)(  )
A.1mB.2mC.3mD.4m

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

19.地球同步卫星到地心的距离r可由r3=$\frac{{a}^{2}{b}^{2}c}{4{π}^{2}}$求出,已知式中a的单位是m,b的单位是s,c的单位是m/s2,则(  )
A.a是地球半径,b是地球自转的周期,c是地球表面处的重力加速度
B.a是同步卫星轨道半径,b是同步卫星绕地心运动的周期,c是同步卫星的加速度
C.a是赤道周长,b是地球自转周期,c是同步卫星的角速度
D.a是同步卫星轨道半径,b是同步卫星运动的周期,c是地球表面处的重力加速度

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

6.一根原长为l0=0.1m的轻弹簧,一端拴住质量为m=0.5kg的小球,以另一端为圆心在光滑的水平面上做匀速圆周运动,如图所示,角速度为ω=10rad/s,弹簧的劲度系数k=100N/m,求小球做匀速圆周运动所受到的拉力大小.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.一宇航员乘宇宙飞船到达某星球表面,他将所带的一个长为L=2m,倾角为θ=37°的斜面,固定在该星球地面上,宇航员让一个与斜面的滑动摩擦因数为μ=0.5的小滑块从斜面顶端由静止释放,他测出小滑块到达斜面底端所用时间为t=2s.求:(sin37°=0.6,cos37°=0.8)
(1)该星球地面的重力加速度g;
(2)若已知该星球半径为R,万有引力恒量为G,忽略该星球的自转,求星球的质量M.
(3)该星球的第一宇宙速度?

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

3.一个矩形线框的面积为S,在磁感应强度为B的匀强磁场中,从线圈平面与磁场垂直的位置开始计时,转速为n rad/s,则(  )
A.线框交变电动势的峰值为$\sqrt{2}$nπBS
B.线框交变电动势的有效值为nπBS
C.从开始转动经过$\frac{1}{4}$周期,线框中的平均感应电动势为2nBS
D.感应电动势瞬时值为e=2nπBSsin2nπt

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

20.一个按正弦规律变化的交变电流的图象如图所示,由图可知(  )
A.该交变电流的有效值为10$\sqrt{2}$A
B.该交变电流的最小值为-20A
C.该交变电流的瞬时值表达式为i=20sin0.02t(A)
D.该交变电流的频率为0.2 Hz

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

1.一辆汽车在水平公路上转弯,如图1所示,其转弯过程可简化成圆周运动,如图2.汽车的速度v、牵引力F以及阻力Ff的方向如图3所示,下列对于汽车的运动分析正确的是(  )
A.汽车做匀速圆周运动B.汽车做加速圆周运动
C.汽车做减速圆周运动D.以上三种情况都可能

查看答案和解析>>

同步练习册答案