分析 (1)滑块从静止释放到与弹簧接触的过程做匀加速运动,欲求时间,应该用匀变速直线运动规律公式中位移和时间的关系式.当然需用牛顿第二定律解决加速度问题.
(2)接触弹簧后随着弹簧弹力的逐渐增大,滑块的加速度逐渐减小,当加速度等于零时它的速度最大,此时合力等于零.可求出弹簧缩短的距离.再由动能定理求出弹簧做的功.
(3)绘出整个过程中的v-t图象需要区别匀变速和非匀变速的过程,在非匀变速过程中要根据加速度大小分析出曲线的斜率.
解答 解:(1)滑块从静止释放到与弹簧刚接触的过程中做初速度为零的匀加速直线运动,设加速度大小为a,则有:
qE+mgsinθ=ma…①
又有:s0=$\frac{1}{2}$at2…②
联立①②可得:t1=$\sqrt{\frac{2m{s}_{0}}{qE+mgsinθ}}$…③
(2)滑块速度最大时受力平衡,设此时弹簧压缩量为x0,则有:
mgsinθ+qE=kx0…④
从静止释放到速度达到最大的过程中,由动能定理得:
(mgsinθ+qE)•(s0+x0)+W=$\frac{1}{2}$mvm2-0…⑤
联立④⑤可得:
W=$\frac{1}{2}$mvm2-(mgsinθ+qE)•(s0+$\frac{mgsinθ+qE}{k}$)
(3)假设t1时刻速度为v1,这段时间内匀加速运动我们描点用刻度尺连线即可;
设t2时刻速度达到最大,t1到t2时刻物体做加速度减小的加速运动,画一段斜率逐渐减小的平滑曲线即可.
设第一次速度为零的时刻为t3,t2到t3时间内物体做加速度增大的减速运动,画一段斜率逐渐增大的平滑曲线即可,
如图所示:
答:
(1)滑块从静止释放到与弹簧上端接触瞬间所经历的时间t1是$\sqrt{\frac{2m{s}_{0}}{qE+mgsinθ}}$.
(2)弹簧的弹力所做的功是$\frac{1}{2}$mvm2-(mgsinθ+qE)•(s0+$\frac{mgsinθ+qE}{k}$).
(3)如图.
点评 本题要分析清楚物体的运动过程,在有变力做功时运用动能定理求功常用的方法.第二问的关键是正确写出动能定理方程.第三问画图象更是要弄清楚曲线斜率的意义.
科目:高中物理 来源: 题型:多选题
A. | 物体M具有正方向的最大速度 | |
B. | 物体M的速度为负方向且正在减小 | |
C. | 物体M的加速度为零 | |
D. | 物体M的加速度为负方向且正在增大 |
查看答案和解析>>
科目:高中物理 来源: 题型:多选题
A. | 两小球某次到达轨道最低点时的速度不可能有υN=υM | |
B. | 两小球都能到达轨道的最右端 | |
C. | 小球b第一次到达N点的时刻与小球a第一次到达M点的时刻相同 | |
D. | 小球a受到的电场力一定不大于a的重力,小球b受到的最大洛伦兹力可能大于b的重力 |
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
A. | 子弹损失的动能等于fd | |
B. | 子弹损失的动能为$\frac{1}{2}$mυ02 | |
C. | 子弹、木块组成的系统损失的动能等于fd | |
D. | 子弹、木块组成的系统损失的动能为$\frac{1}{2}$(m+M)υ02-$\frac{1}{2}$(m+M)υ12 |
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
A. | 重力、支持力、静摩擦力均增大 | |
B. | 重力不变,支持力增大,静摩擦力减小 | |
C. | 重力不变,支持力、静摩擦力增大 | |
D. | 以上说法都不对 |
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
A. | 只有0<t<2s内加速度与速度方向相同 | |
B. | 0-2s内物体的加速度为1.5m/s2 | |
C. | 4-6s内物体的速度一直在减小 | |
D. | 0<t<2s和5s<t<6s内加速度的方向相反 |
查看答案和解析>>
科目:高中物理 来源: 题型:计算题
查看答案和解析>>
科目:高中物理 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com