精英家教网 > 高中物理 > 题目详情
1.如图所示,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MO左侧存在电场强度为E、方向竖直向下的匀强电场,MO右侧某个区域存在磁感应强度为B、垂直纸面向里的匀强磁场,O点处在磁场的边界上.现有一群质量为m、电量为+q的带电粒子在纸面内以垂直于MO的速度从O点射入磁场,速度大小介于0到$\frac{E}{B}$之间.所有粒子通过直线MO时,速度方向均平行于PQ向左.不计粒子的重力和粒子间的相互作用力,求:
(1)速度最大的粒子自O点射入磁场至返回水平线POQ所用的时间.
(2)磁场区域的最小面积.
(3)根据你以上的计算可求出粒子射到PQ上的最远点离O的距离,请写出该距离的大小(只要写出最远距离的最终结果,不要求写出解题过程)

分析 (1)粒子的运动轨迹如图所示,设粒子在匀强磁场中做匀速圆周运动的半径为R,周期为T,先求出粒子在匀强磁场中运动时间,粒子自N点水平飞出磁场,出磁场后应做匀速运动至OM,根据几何关系及速度时间公式求出时间,过MO后粒子做类平抛运动,根据平抛运动的基本公式求出此过程中的时间,三段时间之和即为总时间;
(2)由题知速度大小不同的粒子均要水平通过OM,则其飞出磁场的位置均应在ON的连线上,故磁场范围的最小面积△S是速度最大的粒子在磁场中的轨迹与ON所围成的面积.
(3)分三段求PO间的距离,圆周运动部分、匀速运动部分和类平抛运动部分.

解答 解:(1)粒子的运动轨迹如图所示,设粒子在匀强磁场中做匀速圆周运动的半径为R,周期为T,粒子在匀强磁场中运动时间为t1

由牛顿第二定律得:qvB=m$\frac{{v}^{2}}{R}$,解得:R=$\frac{mv}{qB}$,T=$\frac{2πm}{qB}$,t1=$\frac{1}{3}$T,
设粒子自N点水平飞出磁场,出磁场后应做匀速运动至OM,
设匀速运动的距离为s,匀速运动的时间为t2
由几何关系知:s=$\frac{R}{tanθ}$,t2=$\frac{s}{v}$,
过MO后粒子做类平抛运动,设运动的时间为t3
则:$\frac{3}{2}$R=$\frac{1}{2}$$\frac{qE}{m}$t32,由题意可知:v=$\frac{E}{B}$,
则速度最大的粒子自O进入磁场至重回水平线POQ所用的时间为:
t=t1+t2+t3=$\frac{2(3\sqrt{3}+π)m}{3qB}$;
 (2)由题知速度大小不同的粒子均要水平通过OM,则其飞出磁场的位置均应在ON的连线上,
故磁场范围的最小面积△S是速度最大的粒子在磁场中的轨迹与ON所围成的面积,扇形OO′N的面积的面积S=$\frac{1}{3}$πR2
△OO′N的面积为:S′=R2cos30°sin30°=$\frac{\sqrt{3}}{4}$R2
△S=S-S′,解得:△S=$\frac{(4π-3\sqrt{3}){m}^{2}{E}^{2}}{12{q}^{2}{B}^{4}}$;
(3)粒子射到PQ上的最远点离O的距离d=$\frac{5\sqrt{3}mE}{2q{B}^{2}}$.(由分析知,最远距离分三段求,圆周运动部分,匀速运动部分和类平抛运动部分)
答:(1)速度最大的粒子从O开始射入磁场至返回水平线POQ所用的时间为$\frac{2(3\sqrt{3}+π)m}{3qB}$;
(2)磁场区域的最小面积为:$\frac{(4π-3\sqrt{3}){m}^{2}{E}^{2}}{12{q}^{2}{B}^{4}}$;
(3)粒子射到PQ上的最远点离O的距离大小为$\frac{5\sqrt{3}mE}{2q{B}^{2}}$.

点评 做好此类题目的关键是准确的画出粒子运动的轨迹图,利用几何知识求出粒子运动的半径,再结合半径公式和周期公式去分析.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

11.物体在竖直向上的拉力F作用下,以竖直向上的加速度a(a≠0)做匀加速运动.如果竖直向上的拉力大小变为2F,此时该物体的加速度(  )
A.大于2aB.等于2aC.大于a而小于2aD.有可能小于a

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

12.如图甲所示,两根足够长的竖直光滑平行金属导轨相距L1=0.1m,导轨下端通过导线连接阻值R=0.4Ω的电阻,质量m=0.2kg,阻值r=0.1Ω的金属棒MN放在两导轨上,棒与导轨垂直并保持良好接触,整个装置处于垂直导轨平面的交替变化的磁场中,B1=20T,B2=10T,各磁场宽度均为L2=0.05m,取g=10m/s2
(1)若用一竖直向上的拉力将金属棒从ab位置以v=1m/s的速度匀速拉到jk位置,求拉力做的功和电路中电流的有效值.
(2)若所加磁场的磁感应强度大小恒为B′,用功率恒为Pm=6W的竖直向上的拉力使棒从静止开始向上运动,棒向上的位移随时间变化的情况如图乙所示,试求磁感应强度B'的大小和棒变速运动阶段在电阻R上的产生的热量.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

9.如图所示,在坐标平面的第Ⅰ象限内有水平向左的匀强电场E=1.0×103V/m,第Ⅱ象限内有垂直纸面向外的匀强磁场B=0.4T,一荷质比为$\frac{q}{m}$=1.0×105C/Kg的带正电粒子,从x轴上的P点以初速度v0垂直x轴进入磁场,已知P与原点O之间的距离为L=0.1m,粒子恰好到达O点而不进入电场,不计重力.求:
(1)带电粒子的初速度v0
(2)若带电粒子的初速度方向不变,大小为原来的2倍,粒子第三次到达y轴的位置为N,求粒子从P到N的时间t和总路程S.(结果取两位有效数)

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

16.下列物理量不是矢量的是(  )
A.速度B.速率C.位移D.加速度

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

6.北京时间2011年9月30日16时09分,“天宫一号”成功实施第2次轨道控制,近地点高度由200公里抬升至约362公里,为后续进入交会对接轨道奠定了基础.据介绍,航天器发射后,受高层大气阻力的影响,其轨道高度会逐渐缓慢降低.此次轨道抬升后,预计“天宫一号”在与神舟八号对接时,轨道高度自然降至约343公里的交会对接轨道,从而尽量减少发动机开机.由以上可知(  )
A.在轨道高度下降过程中,“天宫一号”的动能减小,机械能减小
B.在轨道高度下降过程中,“天宫一号”的动能增加,机械能增加
C.轨道高度抬升时,“天宫一号”发动机应向后喷气加速
D.轨道高度下降后,“天宫一号”绕地球运动的周期变短

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

13.某静电场的电场线分布如图所示,P、Q为该电场中的两点,下列说法正确的是(  )
A.P点场强大于Q点场强
B.P点电势低于Q点电势
C.将电子从P点移动到Q点,电场力做正功
D.将电子从P点移动到Q点,其电势能增大

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

10.一直流电动机正常工作时两端的电压为U,通过的电流为I,电动机线圈的电阻为r.该电动机正常工作时,下列说法正确的是(  )
A.电动机消耗的电功率为IUB.电动机的发热功率为$\frac{{U}^{2}}{r}$
C.I、U、r三个量间满足I=$\frac{U}{r}$D.以上说法均不对

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

11.如图所示是马戏团中上演的飞车节目,在竖直平面内有半径为R的圆轨道,表演者骑着摩托车在圆轨道内做圆周运动.已知人和摩托车的总质量为m,车以v1=2$\sqrt{2gR}$的速度过最低点A,以v2=2$\sqrt{gR}$的速度过轨道最高点B.求在A、B两点轨道对摩托车的压力大小FA和FB

查看答案和解析>>

同步练习册答案