相关习题
 0  13316  13324  13330  13334  13340  13342  13346  13352  13354  13360  13366  13370  13372  13376  13382  13384  13390  13394  13396  13400  13402  13406  13408  13410  13411  13412  13414  13415  13416  13418  13420  13424  13426  13430  13432  13436  13442  13444  13450  13454  13456  13460  13466  13472  13474  13480  13484  13486  13492  13496  13502  13510  176998 

科目: 来源:上海模拟题 题型:多选题

如图,左侧接有定值电阻的光滑导轨处于垂直纸面向外的匀强磁场中,导轨间距为L,质量为m阻值不计的金属棒由静止开始在恒定拉力F作用下从CD处沿导轨向左加速运动。从金属棒开始运动起,磁感强度随时间变化关系为Bkt,当金属棒移动距离d至磁场右边界EF,磁场磁感强度即保持不变,恰能使金属棒在磁场中作匀速直线运动。匀强磁场区域中GH与EF相距为2d。下列判断正确的是
[     ]
A.金属棒进入磁场前后回路中感应电流方向不变
B.当磁场保持不变后磁感强度大小Bk
C.导轨左侧定值电阻阻值Rk2L2
D.金属棒从CD运动至GH过程中全电路产生的焦耳热为Q=2Fd

查看答案和解析>>

科目: 来源:浙江省高考真题 题型:计算题

如图甲所示,在水平面上固定有长为L=2 m、宽为d=1 m的金属“U”型导轨,“U”型导轨右侧l=0.5 m范围 内存在垂直纸面向里的匀强磁场,且磁感强度随时间变化规律如图乙所示。在t=0时刻,质量为m=0.1kg的导体棒以v0=1 m/s的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1Ω/m,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取g=10 m/s2)。
(1)通过计算分析4s内导体棒的运动情况;
(2)计算4s内回路中电流的大小,并判断电流方向;
(3)计算4s内回路产生的焦耳热。

查看答案和解析>>

科目: 来源:浙江省月考题 题型:计算题

如图(甲)所示,一对平行光滑轨道放置在水平面上,两轨道相距L=1m,两轨道之间用R=3Ω的电阻连接,一质量m=0.5kg的导体杆与两轨道垂直,静止放在轨道上,轨道的电阻可忽略不计。整个装置处于磁感应强度B=2T的匀强磁场中,磁场方向垂直轨道平面向上,现用水平拉力沿轨道方向拉导体杆,拉力F与导体杆运动的位移s间的关系如图(乙)所示,当拉力达到最大时,导体杆开始做匀速运动,当位移s=2.5m时撤去拉力,导体杆又滑行了一段距离s′后停止。已知在拉力F作用过程中,通过电阻R上电量q为1.25C。在滑行s′的过程中电阻R上产生的焦耳热为12J。求:
(1)导体杆运动过程中的最大速度vm
(2)拉力F的最大值Fm
(3)拉力F作用过程中,电阻R上产生的焦耳热。

查看答案和解析>>

科目: 来源:同步题 题型:计算题

如图甲所示,一端封闭的两条平行光滑导轨相距L,距左端L处的中间一段被弯成半径为H的1/4圆弧,导轨左右两段处于高度相差H的水平面上,圆弧导轨所在区域无磁场,右段区域存在匀强磁场B0,左段区域存在均匀分布但随时间线性变化的磁场B(t),如图乙所示,两磁场方向均竖直向上。在圆弧顶端,放置一质量为m的金属捧ab,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t0滑到圆弧底端。设金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g。
(1)问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?
(2)求0到t0时间内,回路中感应电流产生的焦耳热量。
(3)探讨在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,回路中感应电流的大小和方向。

查看答案和解析>>

科目: 来源:天津高考真题 题型:计算题

磁悬浮列车是一种高速低耗的新型交通工具,它的驱动系统简化为如下模型。固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN为l平行于y轴,宽为d的NP边平行于x轴,如图1所示。列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁感应强度B沿Ox方向按正弦规律分布,其空间周期为λ,最大值为B0,如图2所示,金属框同一长边上各处的磁感应强度相同,整个磁场以速度v0沿Ox方向匀速平移。设在短暂时间内,MN、PQ边所在位置的磁感应强度随时问的变化可以忽略,并忽略一切阻力。列车在驱动系统作用下沿Ox方向加速行驶,某时刻速度为(v<v0)。
(1)叙述列车运行中获得驱动力的原理;
(2)列车获得最大驱动力,写出MN、PQ边应处于磁场中的什么位置及λ与d之间应满足的关系式;
(3)计算在满足第(2)问的条件下列车速度为v时驱动力的大小。

查看答案和解析>>

科目: 来源:福建省同步题 题型:计算题

如图(甲)所示,M1M4、N1N4为平行放置的水平金属轨道,M4P、N4Q为相同半径,平行放置的竖直半圆形金属轨道,M4、N4为切点,P、Q为半圆轨道的最高点,轨道间距L=1.0m,圆轨道半径r=0.32m,整个装置左端接有阻值R=0.5Ω的定值电阻。M1M2N2N1、M3M4N4N3为等大的长方形区域Ⅰ、Ⅱ,两区域宽度d=0.5m,两区域之间的距离s=1.0m;区域Ⅰ内分布着均匀的变化的磁场B1,变化规律如图(乙)所示,规定竖直向上为B1的正方向;区域Ⅱ内分布着匀强磁场B2,方向竖直向上。两磁场间的轨道与导体棒CD间的动摩擦因数为μ=0.2,M3N3右侧的直轨道及半圆形轨道均光滑。质量m=0.1kg,电阻R0=0.5Ω的导体棒CD在垂直于棒的水平恒力F拉动下,从M2N2处由静止开始运动,到达M3N3处撤去恒力F,CD棒匀速地穿过匀强磁场区,恰好通过半圆形轨道的最高点PQ处。若轨道电阻、空气阻力不计,运动过程导棒与轨道接触良好且始终与轨道垂直,g取10m/s2。求:
(1)水平恒力F的大小;
(2)CD棒在直轨道上运动过程中电阻R上产生的热量Q。

查看答案和解析>>

科目: 来源:不详 题型:问答题

一种测量血管中血流速度的仪器原理如图所示,在动脉血管两侧分别安装电极并加有磁场.设血管直径是2.0mm,磁场的磁感应强度为0.080T,电压表测出的电压为0.10mV,求血流速度的大小.
精英家教网

查看答案和解析>>

科目: 来源:北京期末题 题型:不定项选择

在水平桌面上,一个圆形金属框置于匀强磁场B1中,线框平面与磁场垂直,圆形金属框与一个水平的平行金属导轨相连接,导轨上放置一根导体棒ab,导体棒与导轨接触良好,导体棒处于另一匀强磁场B2中,该磁场的磁感应强度恒定,方向垂直导轨平面向下,如图甲所示,磁感应强度B1随时间t的变化关系如图乙所示,0~1.0s内磁场方向垂直线框平面向下。若导体棒始终保持静止,并设向右为静摩擦力的正方向,则导体棒所受的静摩擦力f随时间变化的图象是选项图中的
   
[     ]
A.
B.
C.
D.

查看答案和解析>>

科目: 来源:不详 题型:填空题

如图,将一金属或半导体薄片垂直置于磁场B中,在薄片的两个侧面a、b间通以电流I时,另外两侧c、f间产生电势差,这一现象称为霍尔效应.其原因是薄片中的移动电荷受洛伦兹力的作用向一侧偏转和积累,于是c、f间建立起电场EH,同时产生霍尔电势差UH.当电荷所受的电场力与洛伦兹力处处相等时,EH和UH达到稳定值,UH的大小与I和B以及霍尔元件厚度d之间满足关系式UN=RH
IB
d
,其中比例系数RH称为霍尔系数,仅与材料性质有关
(1)若半导体材料是自由电子导电的,请判断图1中______端(填c或f)的电势高;
(2)已知半导体薄片内单位体积中导电的自由电子数为n,电子的电荷量为e,请导出霍尔系数RH的表达式______.(通过横截面积S的电流I=nevS,其中v是导电电子定向移动的平均速率.
精英家教网

查看答案和解析>>

科目: 来源:不详 题型:单选题

为了保证汽车刹车时车轮不被抱死,是车轮仍有一定的滚动而不是纯滑动,这样既可以提高刹车效果,又不使车轮驶去控制,为此需要一种测定车轮是否还在转动的装置,这种检测装置被称为电磁脉冲传感器,如果该装置检测出车轮不再转动,它就会自动放松刹车机构,让轮子仍保持缓慢转动状态,这就是ABS防抱死系统,如图是电磁脉冲传感器示意图,B是一根永久磁体,外面绕右线圈,它们的左端靠近一个铁质齿轮A,齿轮与转动的车轮是同步的,则以下的说法正确的是(  )
A.车轮转动时,由于齿轮在永久磁体的磁场中切割磁感线,产生输出电流
B.车轮转动时,由于齿轮被磁化使线圈中的磁场发生变化,产生输出电流
C.车轮转速减慢时,输出电流的周期变小,电流也变小
D.车轮转速减慢时,输出电流的周期变大,电流也变大
精英家教网

查看答案和解析>>

同步练习册答案