相关习题
 0  134074  134082  134088  134092  134098  134100  134104  134110  134112  134118  134124  134128  134130  134134  134140  134142  134148  134152  134154  134158  134160  134164  134166  134168  134169  134170  134172  134173  134174  134176  134178  134182  134184  134188  134190  134194  134200  134202  134208  134212  134214  134218  134224  134230  134232  134238  134242  134244  134250  134254  134260  134268  176998 

科目: 来源: 题型:计算题

10.如图所示,长L=2.0m,质量M=3.0kg的绝缘板静止放在倾角为37°的光滑斜面上,-质量m=1.0kg,带电荷量q=+3.0×10-4C的物块(可视为质点)放在绝缘板的上端,绝缘板和物块间的动摩擦因数μ=0.1,所在空间存在方向垂直斜面向下,电场强度E=4.0×104N/C的匀强电场,现对木板施加一平行于斜面向上的拉力F=20.0N.取g=10m/s2,斜面足够长.
(cos37°=0.8,sin37°=0.6)试求:
(1)物块在绝缘板上向下滑行的加速度大小a;
(2)物块离开绝缘板时的动能EK
(3)物块在绝缘板上运动过程中,由于摩擦所产生热量Q.

查看答案和解析>>

科目: 来源: 题型:选择题

9.如图所示,绝缘长方体B置于水平面上,两端固定一对平行带电极板,极极间形成匀强电场E,长方体B的上表面光滑,下表面与水平面间的动摩擦因数μ=0.05(设最大静摩擦力与滑动摩擦力相同),B与极板的总质量mB=1.0kg.带正电的小滑块A的质量mA=0.6kg,其受到的电场力大小F=1.2N.假设A所带的电荷量不影响极板间的电场分布.某时刻,小滑块A从B的上表面以速度vA向左运动,同时B(连同极板)以速度vB向右运动.g取10m/s2,则B刚开始运动时的加速度为(  )
A.2m/s2,方向水平向右B.2m/s2,方向水平向左
C.0.8m/s2,方向水平向左D.0.05m/s2,方向水平向左

查看答案和解析>>

科目: 来源: 题型:解答题

8.在距离为2L的两个平行带电金属B板正中央,有带电导体网OO′,电压UBO=2UOA.现从A板的M点飞出一个带正电的粒子,其抛射角为α,如图所示,已知轨迹最高点在距离B板$\frac{1}{2}$l处,求粒子返回A板的落地点到M点的水平距离x.

查看答案和解析>>

科目: 来源: 题型:多选题

7.如图所示,两条足够长的光滑平行金属导轨与水平面的夹角为θ,下端接有定值电阻R,匀强磁场垂直于导轨平面向上,磁感应强度为B.现给导体棒MN一平行于导轨的初速度v,使导体棒保持与导轨垂直并沿导轨向上运动,经过一段时间导体棒又回到原位置.不计导轨和导体棒的电阻,在这一过程中,下列说法正确的是(  )
A.导体棒上滑时棒中的电流方向由N到M
B.导体棒上滑阶段和下滑阶段的同一位置受到的安培力大小相同
C.整个过程中流过导体某一横截面上的电荷量必然为零
D.导体棒在上升阶段动能减小量等于回路中热能的增加量

查看答案和解析>>

科目: 来源: 题型:实验题

6.新津中学科技小组借用验证“牛顿第二定律”实验的装置来验证物体合外力做功与动能变化的关系,装置如图1所示.实验中打出的一条纸带如图2所示,起始点O到各计数点A、B、C、D、E、F、G的距离依次为15.50cm、21.60cm、28.61cm、36.70cm、45.75cm、55.75cm、66.77cm,相邻计数点间时间间隔为0.1s.实验时小车所受的拉力F为0.2N,小车的质量为m=200g.

(1)钩码的质量约为A
A.10g        B.20g          C.100g          D.200g
(2)小车运动到E点时的速度为0.953m/s,从O点到E点拉力做的功为0.0915J,E点的动能为0.0907J.(结果保留三位有效数字)
(3)可以得出结论:在实验误差允许范围内,小车从O点到E点拉力做的功等于其动能的变化.

查看答案和解析>>

科目: 来源: 题型:多选题

5.如图所示,在竖直平面内的两条间距为H(H>0,其值未知)的水平虚线之间存在大小为B,方向垂直纸面向里的匀强磁场.现有一矩形线圈,质量为m,宽度为L1,高度为L2,电阻为R,将其从图示位置1(线圈的下边与磁场上边界重合)由静止释放,经过一段时间后线圈下落至图示位置2(线圈的上边与磁场的下边界重合)的速度大小为v,整个运动过程中线圈平面始终处于竖直面内.重力加速度为g,不计空气阻力.则下面说法正确的是(  )
A.若线圈在该运动过程中某段时间加速度等于g,则L2与H一定不相等
B.若v=$\frac{mgR}{{B}^{2}{{L}_{1}}^{2}}$,则L2一定小于H
C.无论H取何值,v都不可能大于$\frac{mgR}{{B}^{2}{{L}_{1}}^{2}}$
D.无论H取何值,线圈在该过程中产生的焦耳热一定大于mgH-$\frac{1}{2}$mv2

查看答案和解析>>

科目: 来源: 题型:计算题

4.许多电磁现象可以用力的观点来分析,也可以用动量、能量等观点来分析和解释.
(1)如图1所示,足够长的平行光滑金属导轨水平放置,导轨间距为L,一端连接阻值为R的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度为B.质量为m、电阻为r的导体棒MN放在导轨上,其长度恰好等于导轨间距,与导轨接触良好.在平行于导轨、大小为F的水平恒力作用下,导体棒从静止开始沿导轨向右运动.
a.当导体棒运动的速度为v时,求其加速度a的大小;
b.已知导体棒从静止到速度达到稳定所经历的时间为t,求这段时间内流经导体棒某一横截面的电荷量q.
(2)在如图2所示的闭合电路中,设电源的电动势为E,内阻为r,外电阻为R,其余电阻不计,电路中的电流为I.请你根据电动势的定义并结合能量转化与守恒定律证明:I=$\frac{E}{R+r}$.

查看答案和解析>>

科目: 来源: 题型:实验题

3.如图所示,水平平行金属板A、B间距为d,带电质点质量为m,电荷量为q,当质点以速率v从两极板中央处水平飞入两极间,两极不加电压时,恰好从下板边缘飞出,若给A、B两极加一电压,使质点恰好沿两板中线水平飞出电场,那么所需施加电压U1=$\frac{mgd}{q}$;若要使带电质点恰好从上板边缘飞出,那么所需施加电压U2=$\frac{2mgd}{q}$,该过程中电场力对质点做功为mgd.(重力加速度为g)

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图所示,水平放置的平行板电容器,两板间距d=8cm,板长L=25cm,接在直流电源上.一个带电油滴以v0=0.5m/s的初速度从板间的正中央水平射入,恰好做匀速直线运动,当它运动到P处时迅速将下板向上提起△d=$\frac{4}{3}$cm,油滴刚好从金属板末端飞出,g取10m/s2.求:
(1)将下板向上提起后,平行板电容器内部电场强度E′与原电场强度E的比值;
(2)将下板向上提起后,液滴的加速度大小;
(3)油滴从射入电场开始计时,匀速运动到P点所用时间.

查看答案和解析>>

科目: 来源: 题型:计算题

1.如图所示为利用静电除烟尘的通道示意图,前、后两面为绝缘板,上、下两面为分别与高压电源的负极和正极相连的金属板,在上下两面间产生的电场可视为匀强电场,通道长L=1m,进烟尘口的截面为边长d=0.5m的正方形.分布均匀的带负电烟尘颗粒均以水平速度v0=2m/s连续进入通道,碰到下金属板后其所带电荷会被中和并被收集,但不影响电场分布.已知每立方米体积内颗粒数n=1013个,每个烟尘颗粒带电量为q=-1.0×10-17C,质量为m=2.0×10-15kg,忽略颗粒的重力、颗粒之间的相互作用力和空气阻力.
(1)高压电源电压U0=300V时,求被除去的烟尘颗粒数与总进入烟尘颗粒数的比值
(2)若烟尘颗粒恰好能全部被除去,求高压电源电压U1
(3)装置在(2)中电压U1作用下稳定工作时,1s内进入的烟尘颗粒从刚进入通道到被全部除去的过程中,求电场对这些烟尘颗粒所做的总功.

查看答案和解析>>

同步练习册答案