相关习题
 0  134226  134234  134240  134244  134250  134252  134256  134262  134264  134270  134276  134280  134282  134286  134292  134294  134300  134304  134306  134310  134312  134316  134318  134320  134321  134322  134324  134325  134326  134328  134330  134334  134336  134340  134342  134346  134352  134354  134360  134364  134366  134370  134376  134382  134384  134390  134394  134396  134402  134406  134412  134420  176998 

科目: 来源: 题型:填空题

11.如图所示,把长L=0.5m的导体棒,垂直放入磁感应强度B=1T的匀强磁场中.当导体棒中通有方向水平向右、大小I=2A的电流时,导体棒受到的安培力大小F=1N,方向向上(填“向上”或“向下).

查看答案和解析>>

科目: 来源: 题型:计算题

10.磁悬浮列车是一种高速交通工具,它具有两个重要系统:一个是悬浮系统,另一个是驱动系统.驱动系统的简化模型如下:图1是实验车与轨道示意图,图2是固定在实验车底部的金属框与轨道间的运动磁场的示意图.水平地面上有两根很长的平行直导轨,导轨间有垂直于水平面的等间距的匀强磁场(每个磁场的宽度与金属框的宽度相同),磁感应强度B1、B2大小相同,相邻磁场的方向相反,所有磁场同时以恒定速度v0沿导轨方向向右运动,这时实验车底部的金属框将会受到向右的磁场力,带动实验车沿导轨运动.

设金属框总电阻R=1.6Ω,垂直于导轨的边长L=0.20m,实验车与金属框的总质量m=2.0kg,磁感应强度B1=B2=B=1.0T,磁场运动速度v0=10m/s.回答下列问题:
(1)t=0时刻,实验车的速度为零,求此时金属框受到的磁场力的大小和方向;
(2)已知磁悬浮状态下,实验车运动时受到的阻力恒为f1=0.20N,求实验车的最大速率vm
(3)若将该实验车A与另外一辆质量相等但没有驱动装置的磁悬浮实验车P挂接,设A与P挂接后共同运动所受阻力恒为f2=0.50N.A与P挂接并经过足够长时间后已达到了最大速度,这时撤去驱动磁场,保留磁悬浮状态,A与P所受阻力f2保持不变,那么撤去驱动磁场后A和P还能滑行多远?

查看答案和解析>>

科目: 来源: 题型:计算题

9.如图甲,间距L=1.0m的平行长直导轨MN、PQ水平放置,两导轨左端MP之间接有一阻值为R=0.1Ω的定值电阻,导轨电阻忽略不计.一导体棒ab垂直于导轨放在距离导轨左端d=1.0m,其质量m=0.1kg,接入电路的电阻为r=0.1Ω,导体棒与导轨间的动摩擦因数μ=0.1,整个装置处在范围足够大的竖直方向的匀强磁场中.选竖直向下为正方向,从t=0时刻开始,磁感应强度B随时间t的变化关系如图乙所示,导体棒ab一直处于静止状态.不计感应电流磁场的影响,当t=3s时,突然使ab棒获得向右的速度v0=10m/s,同时在棒上施加一方向水平、大小可变化的外力F,保持ab棒具有大小恒为a=5m/s2方向向左的加速度,取g=10m/s2

(1)求前3s内电路中感应电流的大小和方向.
(2)求ab棒向右运动且位移x1=6.4m时的外力F.
(3)从t=0时刻开始,当通过电阻R的电量q=5.7C时,ab棒正在向右运动,此时撤去外力F,且磁场的磁感应强度大小也开始变化(图乙中未画出),ab棒又运动了x2=3m后停止.求撤去外力F后电阻R上产生的热量Q.

查看答案和解析>>

科目: 来源: 题型:选择题

8.如图所示,在光滑水平面上方,有两个磁感应强度大小均为B、方向相反的水平匀强磁场,如图所示,PQ为两个磁场的边界,磁场范围足够大.一个共n匝,边长为a,总质量为m,总电阻为R的正方形金属线框垂直磁场方向,以速度v从图示位置向右运动,当线框中心线AB运动到PQ重合时,线框的速度为$\frac{v}{3}$,则(  )
A.此时线框中的电功率为$\frac{{4{n^2}{B^2}{a^2}{v^2}}}{9R}$
B.此时线框的加速度为$\frac{{4{n^2}{B^2}{a^2}v}}{3R}$
C.此过程通过线框截面的电量为$\frac{{B{a^2}}}{R}$
D.此过程回路产生的电能为$\frac{1}{6}m{v^2}$

查看答案和解析>>

科目: 来源: 题型:多选题

7.利用如图所示的电流天平,可以测定磁感应强度,某次操作如下:①在天平的右臂下面挂一个N=100匝、水平边长l=5cm的矩形线圈,线圈下部处于虚线区域内的匀强磁场中,磁场方向垂直于纸面;②在线圈中通以图示方向、I=0.2A的电流,在天平左、右两边加上质量各为 m1、m2的砝码,天平平衡;③让电流反向(大小不变),在右边减去一个质量m=20g的砝码后,天平恰好重新平衡.重力加速度g=10m/s2,下列判断正确的是(  )
A.磁场的方向垂直于纸面向里B.线圈所受安培力大小为0.1N
C.磁场的磁感应强度大小为1×10-3TD.磁场的磁感应强度大小为0.1T

查看答案和解析>>

科目: 来源: 题型:计算题

6.竖直放置的两根表面光滑的平行金属导轨,间距为d,导轨上端连接一阻值为R的定值电阻.两导轨间存在着与导轨平面垂直且方向相反的匀强磁场区域Ⅰ和Ⅱ,磁感应强度大小均为B.当质量为m0的金属棒ab从图中位置由静止释放后,刚进入区域Ⅰ即做匀速运动;若在金属棒的中点挂上质量为△m的小沙桶,仍从图示位置由静止释放金属棒ab,棒匝磁场中某一位置可达到最大速度;若逐渐增大小沙桶的质量,棒所达到的最大速度vm随之改变.已知重力加速度大小为g,区域Ⅱ足够大,不计导轨和金属棒ab的电阻,金属棒一直与导轨垂直且接触良好.
(1)金属棒不挂沙桶时进入区域Ⅱ后做什么运动?(简述理由)
(2)求金属棒ab释放的位置与区域Ⅰ上边界的距离h;
(3)写出vm和△m的函数关系式.

查看答案和解析>>

科目: 来源: 题型:计算题

5.如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属球,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R.在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B.现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,高平行轨道中够长.已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2
(1)求导体棒ab从A下落r/2时的加速度大小.
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h和R2上的电功率P2
(3)若将磁场II的CD边界略微下移,导体棒ab刚进入磁场II时速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式.

查看答案和解析>>

科目: 来源: 题型:多选题

4.如图所示,面积为S的矩形线圈共N匝,线圈总电阻为R,在磁感应强度为B、方向垂直纸面向里的匀强磁场中以竖直线OO′为轴,以角速度ω匀速旋转,图示位置C与纸面共面,位置A与位置C成45°角.线圈从位置A转过90°到达位置B的过程中,下列说法正确的是(  )
A.平均电动势为$\frac{{2\sqrt{2}}}{π}$NBSω
B.通过线圈某一截面的电量q=$\frac{{2\sqrt{2}NBS}}{R}$
C.在此转动过程中,外界对线圈做的总功大于$\frac{{{N^2}{B^2}{S^2}πω}}{4R}$
D.在此转动过程中,电流方向会发生改变

查看答案和解析>>

科目: 来源: 题型:多选题

3.如图所示,先后以速度v1和v2匀速把一矩形线圈拉出有界的匀强磁场区域,v2=2v1,在先后两种情况下(  ) 
A.线圈中的感应电流之比I1:I2=2:1
B.作用在线圈上的外力大小之比F1:F2=1:2
C.线圈中产生的焦耳热之比Q1:Q2=2:1
D.通过线圈某一截面的电荷量之比q1:q2=1:2

查看答案和解析>>

科目: 来源: 题型:计算题

2.如图甲所示,电阻不计的光滑平行金属导轨相距L=0.5m,上端连接R=0.5Ω的电阻,下端连着电阻不计的金属卡环,导轨与水平面的夹角θ=30°,导轨间虚线区域存在方向垂直导轨平面向上的磁场,其上、下边界之间的距离s=1Om,磁感应强 度B-t图如图乙所示.长为L且质量为m=0.5kg的金属棒ab的电阻不计,垂直导 轨放置于距离磁场上边界d=2.5m处,在t=O时刻由静止释放,棒与导轨始终接触良 好,滑至导轨底端被环卡住不动.g取10m/s2,求:

(1)棒运动到磁场上边界的时间;
(2)棒进人磁场时受到的安培力及棒从进入磁场到运动至卡环的时间;
(3)在0-5s时间内电路中产生的焦耳热.

查看答案和解析>>

同步练习册答案