相关习题
 0  137283  137291  137297  137301  137307  137309  137313  137319  137321  137327  137333  137337  137339  137343  137349  137351  137357  137361  137363  137367  137369  137373  137375  137377  137378  137379  137381  137382  137383  137385  137387  137391  137393  137397  137399  137403  137409  137411  137417  137421  137423  137427  137433  137439  137441  137447  137451  137453  137459  137463  137469  137477  176998 

科目: 来源: 题型:实验题

10.某同学在“测定金属丝的电阻率”的实验中:

(1)为了精确地测出金属丝的电阻,需用欧姆表对金属丝的电阻粗测,用多用电表“×1”欧姆挡粗测其电阻示数如图甲,则阻值为5Ω;
(2)用螺旋测微器测量金属丝的直径,从图乙中可以读出该金属丝的直径d=1.700mm.
(3)除刻度尺、电阻为Rx的金属丝的电阻、螺旋测微器外,实验室还提供如下器材,为使测量尽量精确,电流表应选A1(选填“A1”或“A2”)、电压表应选V2(选填“V1”或“V2”).
电源E(电动势为3V、内阻约为0.5Ω)
最大阻值为20Ω的滑动变阻器R
电流表A1(量程0.6A、内阻约为2Ω)
电流表A2(量程1A、内阻约为1Ω)
电压表V1(量程15V、内阻约为3 000Ω)
电压表V2(量程3.0V、内阻约为1 000Ω)
开关一只、导线若干
(4)在测量Rx阻值时,要求电压从零开始调节,并且多次测量,请在图丙中画完整测量Rx阻值的电路图.(图中务必标出选用的电表、电阻和滑动变阻器的符号).
(5)若用刻度尺测得金属丝的长度为L,用螺旋测微器测得金属丝的直径为d,电流表的读数为I,电压表的读数为U,则该金属丝的电阻率表达式为ρ=$\frac{πU{d}^{2}}{4IL}$.(用L、d、I、U表示)

查看答案和解析>>

科目: 来源: 题型:计算题

9.如图所示,在xOy平面内,有一以O为圆心、R为半径的半圆形匀强磁场区域,磁场方向垂直坐标平面向里,磁感应强度大小为B.位于O点的粒子源向第二象限内的各个方向连续发射大量同种带电粒子,粒子均不会从磁场的圆弧边界射出.粒子的速率相等,质量为m、电荷量为q(q>0),粒子重力及粒子间的相互作用均不计.
(1)若粒子带负电,求粒子的速率应满足的条件及粒子在磁场中运动的最短时间;
(2)若粒子带正电,求粒子在磁场中能够经过区域的最大面积.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图甲所示,光滑的绝缘细杆水平放置,有孔小球套在杆上,整个装置固定于某一电场中.以杆左端为原点,沿杆向右为x轴正方向建立坐标系.沿杆方向电场强度E随位置x的分布如图乙所示,场强为正表示方向水平向右,场强为负表示方向水平向左.图乙中曲线在0≤x≤0.20m和x≥0.4m范围可看作直线.小球质量m=0.02kg,带电量q=+1×10-6C.若小球在x2处获得一个v=0.4m/s的向右初速度,最远可以运动到x4处.
(1)求杆上x4到x8两点间的电势差大小U;
(2)若小球在x6处由静止释放后,开始向左运动,求:
a.加速运动过程中的最大加速度am
b.向左运动的最大距离sm
(3)若已知小球在x2处以初速度v0向左减速运动,速度减为零后又返回x2处,所用总时间为t0,求小球在x2处以初速度4v0向左运动,再返回到x2处所用的时间.(小球运动过程中始终未脱离杆)你可能不会计算,但小球向左运动过程中受力特点你并不陌生,请展开联想,通过类比分析得出结果.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图所示,跨过定滑轮的一根绳子,一端系着m=50kg的重物,一端握在质量M=60kg的人手中.如果人不把绳握死,而是相对地面以$\frac{g}{18}$的加速度下降,设绳子和滑轮的质量、滑轮轴承处的摩擦均可不计,绳子长度不变,试求重物的加速度与绳子相对于人手的加速度.

查看答案和解析>>

科目: 来源: 题型:实验题

6.某同学利用图甲电路测量自来水的电阻率,其中内径均匀的圆柱形玻璃管侧壁连接一细管,细管上加有阀门K以控制管内自来水的水量,玻璃管两端接有导电活塞(活塞电阻可忽略),右侧活塞固定,左侧活塞可自由移动,实验器材还有:
电源(电动势约为2V,内阻不可忽略)
两个完全相同的电流表A1、A2(量程为3mA,内阻不计)
电阻箱R(最大阻值9999Ω)
定值电阻R0(可供选择的阻值由100Ω、1kΩ、10kΩ)
开关S,导线若干,刻度尺.
实验步骤如下:
A.测得圆柱形玻璃管内径d=20mm
B.向玻璃管内注满自来水,并用刻度尺测量水柱长度L
C.连接好电路,闭合开关S,调整电阻箱阻值,读出电流表A1、A2示数分别记为I1、I2,记录电阻箱的阻值R
D.该表玻璃管内水柱长度,多次重复实验步骤B、C,记录每一次水柱长度L和电阻箱阻值R
E.断开S,整理好器材
(1)为了较好的完成该实验,定值电阻R0应选100Ω
(2)玻璃管内水柱的电阻Rx的表达式Rx=$\frac{{I}_{1}(R+{R}_{0})}{{I}_{2}}$(用R0、R、I1、I2表示)
(3)若在上述步骤C中每次调整电阻箱阻值,使电流表A1、A2示数均相等,利用记录的多组水柱长度L和对应的电阻箱阻值R的数据,绘制出如图乙所示的R-L关系图象,则自来水的电阻率ρ=16Ωm(保留两位有效数字),在用本实验方法测电阻率实验中,若电流表内阻不能忽略,则自来水电阻率测量值与上述测量值相比将不变(选填“偏大”、“不变”或“偏小”)

查看答案和解析>>

科目: 来源: 题型:选择题

5.人造卫星在运行中因受高空稀薄空气的阻力作用,绕地球运行的轨道半径会慢慢变化,卫星的运动可近似视为匀速圆周运动,当它缓慢变化前在轨道半径r1上运行时线速度为v1,周期为T1,后来在轨道半径r2上运行时线速度为v2,周期为T2,则它们的关系是(  )
A.v1<v2,T1<T2B.v1>v2,T1>T2C.v1<v2,T1>T2D.v1>v2,T1<T2

查看答案和解析>>

科目: 来源: 题型:计算题

4.如图所示“拉链”机构,A可在竖槽中滑动,B、C、D、E、F为铰接,且AC=BC=EC=FC=ED=FD.在D处作用水平力FD,为保持机构平衡,在A处需施多大的竖直向下力T?

查看答案和解析>>

科目: 来源: 题型:实验题

3.实验室购买了一卷标称长度为100m的铜导线,某同学通过实验测定其实际长度,该同学测得导线横截面积为2.0mm2,查得铜在常温下的电阻率为1.78×10-8Ω•m,利用图甲所示电路测出整卷铜导线的电阻Rx,从而确定导线的实际长度.可供使用的器材有:(不计铜线的温度变化)
电流表A:量程0.6A,内阻约0.1Ω;
电压表V:量程3V,内阻约10kΩ;
滑动变阻器R1:最大阻值10Ω;
滑动变阻器R2:最大阻值100Ω;
定值电阻:R0=5Ω;
电源:电动势3V,内阻可不计;
开关、导线若干.
回答下列问题:
(1)实验中滑动变阻器R应选R1(选填“R1”或“R2”),闭合开关S前应将滑片移至a(选填“a”或“b”)端.
(2)在实验图乙中,请根据图甲电路完成实物图的连接.
(3)调节滑动变阻器,当电流表的示数为0.43A时,电压表示数如图丙所示,示数为2.50V.
(4)导线实际长度为89.9m(结果保留一位小数)

查看答案和解析>>

科目: 来源: 题型:选择题

2.质量为m长度为l的金属棒MN两端由等长的轻质绝缘细线水平悬挂,处于竖直向上的匀强磁场中,磁感应强度大小为B,开始时细线竖直,当金棒中通以由恒定电流后,金属棒从最低点开始向右摆动.若已知细线与竖直方向最大夹角为60°如图所示,则棒中电流为(  )
A.方向由M向N,大小为$\frac{\sqrt{3}mg}{3Bl}$B.方向由N向M,大小为$\frac{\sqrt{3}mg}{3Bl}$
C.方向由M向N,大小为$\frac{\sqrt{3}mg}{Bl}$D.方向由N向M,大小为$\frac{\sqrt{3}mg}{Bl}$

查看答案和解析>>

科目: 来源: 题型:计算题

1.如图,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B1随时间t的变化关系为B1=kt,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t0时刻恰好以速度v0越过MN,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:
(1)在t=0到t=t0时间间隔内,流过电阻的电荷量的绝对值;
(2)在时刻t(t>t0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小.

查看答案和解析>>

同步练习册答案