相关习题
 0  137877  137885  137891  137895  137901  137903  137907  137913  137915  137921  137927  137931  137933  137937  137943  137945  137951  137955  137957  137961  137963  137967  137969  137971  137972  137973  137975  137976  137977  137979  137981  137985  137987  137991  137993  137997  138003  138005  138011  138015  138017  138021  138027  138033  138035  138041  138045  138047  138053  138057  138063  138071  176998 

科目: 来源: 题型:解答题

14.如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5m,左端接有阻值R=0.3Ω的电阻,一质量m=0.1kg,电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T,棒在水平向右的外力作用下,由静止开始做加速运动.已知外力的功率P恒定,P=6.4W,当棒的速度达到最大时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比为Q1:Q2=2:1,导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:
(1)棒在加速运动过程中,最大速度v?
(2)撤去外力后回路中R产生的焦耳热Q?
(3)外力做的功WF
(4)棒加速运动的时间t?

查看答案和解析>>

科目: 来源: 题型:解答题

13.月球探测器在月面实现软着陆是非常困难的,探测器接触地面瞬间速度为竖起向下的v1,大于要求的软着陆速度v0.为此科学家们设计了一种叫电磁阻尼缓冲装置,其原理如图所示,主要部件为缓冲滑块K和绝缘光滑的缓冲轨道MN和PQ.探测器主体中还有超导线圈(图中未画出),能在两轨道间产生垂直于导轨平面的匀强磁场.导轨内的缓冲滑块由高强度绝缘材料制成,滑块K上绕有闭单匝矩形线圈abcd,线圈的总电阻为R,ab边长为L.当探测器接触地面时,滑块K立即停止运动,此后线圈与轨道间的磁场发生作用,使探测器主体做减速运动,从而实现缓冲.已知装置中除缓冲滑块(含线圈)外的质量为m,月球表面的重力加速度为g/6,不考虑运动磁场产生的电场.

(1)当缓冲滑块刚停止运动时,判断线圈中感应电流的方向和线圈ab边受到的安培力的方向;
(2)为使探测器主体减速而安全着陆,磁感应强度B至少应多大?
(3)当磁感应强度为B0时,探测器主体可以实现软着陆,若从v1减速到v0的过程中,通过线圈截面的电量为q,求该过程中线圈中产生的焦热Q.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图所示,光滑导轨竖直放置,匀强磁场的磁感应强度为B=0.5T,磁场方向垂直于导轨平面向外,导体棒ab的长度与导轨宽度均为L=0.2m,电阻R=1.0Ω.导轨电阻不计,当导体棒紧贴导轨以v=70m/s的匀速下滑时,电阻均为R=12Ω的两小灯泡恰好正常发光,求:
求 (1)通过ab的电流的大小和方向. 
(2)小灯泡的额定功率.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图所示,足够长的平行光滑金属导轨水平放置,宽度L=0.4m,一端连接R=1Ω的电阻,导轨所在的空间存在竖直向下的匀强磁场,磁感应强度B=1T,导体棒MN放在导轨上,其长度恰好等于导轨间距,与导轨接触良好.导轨和导体棒的电阻均可忽略不计.在平行于导轨的拉力F作用下,导体棒沿导轨向右匀速运动,速度v=5m/s,求:
(1)当MN向右运动5s时,通过R的电荷量q是多少?
(2)若将MN换为电阻为r=1Ω的导体棒,当MN向右运动5s时,电阻R上产生的热量是多少?其它条件不变.

查看答案和解析>>

科目: 来源: 题型:选择题

10.如图1所示两根电阻忽略不计的导轨平行放置,导轨左端接电阻R1,右端接有小灯泡L,导体棒AB垂直于导轨放置,电阻R1、导体棒AB和小灯泡的电阻均为R(不计灯泡电阻随温度的变化),虚线MN右侧有垂直导轨的磁场,当导体棒AB从距MN左侧某处匀速向右运动时开始计时,磁场随时间变化如图2所示,若导体棒AB从开始计时到穿越磁场的过程中,灯泡的亮度始终不变,则导体棒在穿过磁场前后导体棒上消耗的热功率P1、P2的比值是(  )
A.1:1B.1:2C.1:4D.1:16

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图所示,两根平行金属导轨a、b平行放置在斜面M上,导轨之间的距离为L,在导轨的下方连接有一个阻值为R的电阻,两导轨间有垂直于导轨平面向上的匀强磁场,有一个质量为m的金属杆垂直置于两导轨之上,与两导轨接触,但无摩擦,金属杆在导轨间的电阻为R0,将金属杆系在一个轻质细线上,细线跨过固定在斜面体顶端的一光滑定滑轮与一质量为4m的物块相连,一开始金属杆位于距离地面高为$\frac{{h}_{0}}{2}$处,将物块由静止释放,物块开始下落,物块下落h高度后,与金属杆一起做匀速运动.设一开始磁场的磁感应强度为B0,已知斜面倾角为θ=30°,重力加速度为g,试求:
(1)金属杆做匀速运动的速度;
(2)物块下落h的过程中,金属杆上产生的热量和通过R的电荷量;
(3)设金属杆做匀速运动的速度为v0,从物块下滑h后开始计时,设此时t=0,从t=0开始,由于磁场减弱,R中无电流通过,试写出B随t变化的关系式.

查看答案和解析>>

科目: 来源: 题型:多选题

8.迈克尔•法拉第是英国物理学家,他在电磁学方面做出很多重要贡献.如图是法拉第做成的世界上第一台发电机模型的原理图.将铜盘放在磁场中,让磁感线垂直穿过铜盘,在a、b两处用电刷将导线分别与铜盘的边缘和转轴良好接触,逆时针转动铜盘(沿磁场方向看),就可以使闭合电路获得电流,让小灯泡发光.则(  )
A.a端电势低,b端电势高
B.如转速变为原来的2倍,则感应电动势也变为原来的2倍
C.如转速变为原来的2倍,则流过灯泡的电流将变为原来的4倍
D.如顺时针转动铜盘,则小灯泡不会发光

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图所示,左右两边分别有两根平行金属导轨相距为L,左导轨与水平面夹30°角,右导轨与水平面夹60°角,左右导轨上端用导线连接.导轨空间内存在匀强磁场,左边的导轨处在方向沿左导轨平面斜向下,磁感应强度大小为B的磁场中.右边的导轨处在垂直于右导轨斜向上,磁感应强度大小也为B的磁场中.质量均为m的导杆ab和cd垂直导轨分别放于左右两侧导轨上,已知两导杆与两侧导轨间动摩擦因数均为μ=$\frac{\sqrt{3}}{2}$,回路电阻恒为R,若同时无初速释放两导杆,发现cd沿右导轨下滑s距离时,ab杆才开始运动.(认为最大静摩擦力等于滑动摩擦力).
(1)试求ab杆刚要开始运动时cd棒的速度v 
(2)以上过程中,回路中共产生多少焦耳热;
(3)cd棒的最终速度为多少
(4)功能关系是高中物理解题的重要方法,通过对本题的分析,回忆归纳两个功能关系,并填写下表
内容名称
(物理概念、定理或公式)
理解与应用要点梳理
(包括:原定义,公式不需要写出,重点写出以下内容:内容要点把握、应用注意事项、经常使用的重要结论、形式等)
功能关系
(至少写出两个功能关系)

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图所示,固定于水平桌面上的金属框架ABCDE,处于垂直桌面的匀强磁场中,图中磁场未画出,金属棒MN搁在框架上,与框架良好接触.已知AB=AD,AB与AD垂直,BC与DE平行,相距2L.开始时磁感应强度为B0,MN位于AB与AD的中点.若从t=0时刻起,使MN以速度v向右匀速平移,要使棒中不产生感应电流,则磁感
应强度应怎样随时间变化(求出B与t的关系式).

查看答案和解析>>

科目: 来源: 题型:多选题

5.如图所示,两足够长的光滑平行金属板导轨放置在水平面内,导轨间距为l,左端接电压为U0的电容器,带电情况如图所示,匀强磁场垂直导轨面向下,磁感应强度大小为B,导轨上有一金属棒垂直导轨和磁场放置,可紧贴导轨自由滑动.现给金属棒一个向右的初速度v0,则下图中可能反映金属棒的运动速度随时间变化的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案