相关习题
 0  145626  145634  145640  145644  145650  145652  145656  145662  145664  145670  145676  145680  145682  145686  145692  145694  145700  145704  145706  145710  145712  145716  145718  145720  145721  145722  145724  145725  145726  145728  145730  145734  145736  145740  145742  145746  145752  145754  145760  145764  145766  145770  145776  145782  145784  145790  145794  145796  145802  145806  145812  145820  176998 

科目: 来源: 题型:解答题

3.如图,木板A静止在光滑水平面上,其左端与固定台阶相距x.与滑块B(可视为质点)相连的细线一端固定在O点.水平拉直细线并给B一个竖直向下的初速度,当B到达最低点时,细线恰好被拉断,B从A右端的上表面水平滑入.A与台阶碰撞无机械能损失,不计空气阻力.已知A的质量为2m,B的质量为m,A、B之间动摩擦因数为μ;细线长为L、能承受的最大拉力为B重力的5倍;A足够长,B不会从A表面滑出;重力加速度为g.

(1)求B的初速度大小v0和细线被拉断瞬间B的速度大小v1
(2)A与台阶只发生一次碰撞,求x满足的条件;
(3)x在满足(2)条件下,讨论A与台阶碰撞前瞬间的速度.

查看答案和解析>>

科目: 来源: 题型:解答题

2.德国亚琛工业大学的科研人员成功开发了一种更先进的磁动力电梯升降机,满足上千米摩天大楼中电梯升降的要求.如图所示是一种磁动力电梯的模拟机,即在竖直平面内有两根很长的平行竖直轨道,轨道间有垂直轨道平面的匀强磁场B1和B2,且B1和B2的方向相反,B1=B2=1T,电梯桥厢固定在如图所示的一个用超导材料制成的金属框abcd内(电梯桥厢在图中未画出),并且与之绝缘.电梯载人时的总质量为m=5×103kg,所受阻力大小为Ff=500N,金属框垂直轨道的边长为Lcd=2m,两磁场的宽度均与金属框的边长Lac相同,金属框整个回路的电阻为R=1.0×10-3Ω,问:
(1)假如两磁场始终竖直向上做匀速运动.设计要求电梯以v1=10m/s的速度向上匀速运动,那么,磁场向上运动的速度v0应该为多大?
(2)假如t=0时两磁场由静止开始向上做匀加速运动,加速度大小为a=1.5m/s2,电梯可近似认为过一小段时间后也由静止开始向上做匀加速运动,t=5s末电梯的速度多大?电梯运动的时间内金属框中消耗的电功率多大?从电梯开始运动到t=5s末时间内外界提供给系统的总能量为多大?

查看答案和解析>>

科目: 来源: 题型:解答题

1.擦黑板也许同学们都经历过,手拿黑板擦在竖直的黑板面上,或上下或左右使黑板擦与黑板之间进行滑动摩擦,将黑板上的粉笔字擦干净.已知黑板的规格是:4.5m×1.5m,黑板的下边沿离地的高度为0.8m,若小黑板擦(可视为质点)的质量为0.1kg,现假定某同学用力将小黑板擦在黑板表面缓慢竖直向上擦黑板,当手臂对小黑板擦的作用力F与黑板面成45°角时,F=20N,他所能擦到的最大高度为2.05m,g取10m/s2.求:
(1)此小黑板擦与黑板之间的动摩擦因数;
(2)如该同学擦到最高位置时意外让小黑板擦沿黑板面竖直向下滑落,则小黑板擦砸到黑板下边沿的速度大小.

查看答案和解析>>

科目: 来源: 题型:解答题

20.某物理学习小组的同学在研究性学习过程中,用伏安法研究某电子元件R1(6V,2.5W)的伏安特性曲线,要求多次测量尽可能减小实验误差,备有下列器材:

A.直流电源(6V,内阻不计)
B.电流表G(满偏电流3mA,内阻Rg=10Ω)
C.电流表A(0~0.6A,内阻未知)
D.滑动变阻器R(0~20Ω,5A)
E.滑动变阻器R’(0~200Ω,1A)
F.定值电阻R0(阻值1990Ω)
G.开关与导线若干
(1)根据题目提供的实验器材,请你设计出测量电子元件R1伏安特性曲线的电路原理图(R1可用“”表示).(画在如图丙方框内)
(2)在实验中,为了操作方便且能够准确地进行测量,滑动变阻器应选用D.(填写器材序号)
(3)将上述电子元件R1 和另一电子元件R2接入如图所示的电路甲中,它们的伏安特性曲线分别如图乙中oa、ob所示.电源的电动势E=6.0V,内阻忽略不计.调节滑动变阻器R3,使电子元件R1和R2消耗的电功率恰好相等,则此时电子元件R1的阻值为10Ω,R3接入电路的阻值为4Ω(结果保留两位有效数字).

查看答案和解析>>

科目: 来源: 题型:解答题

19.在做“用单摆测定重力加速度”的实验过程中.

(1)某同学在做“用单摆测定重力加速度”的实验过程中,用毫米刻度尺测得摆线长L0=945.8mm;并用游标卡尺测得摆球的直径如图甲所示,则摆球直径d=20.30mm;用秒表测得单摆完成n=40次全振动的时间如图乙所示,则秒表的示数t=78.4s.
(2)如果该同学测得的g值偏小,可能的原因是AC.(填字母序号)
A.计算摆长时没有计入摆球的半径
B.开始计时时,秒表过迟按下
C.摆线上端未牢固地系于悬点,振动中出现松动,使摆线长度增加了
D.试验中误将39次全振动数为40次
(3)在“单摆测重力加速度”的实验中,如果摆球质量不均匀,按照正常的方法进行实验,会给测量结果造成误差.一个同学设计了一个巧妙的方法,可以避免上述误差,实验分两次进行,第一次测得悬线长为L1,测得振动周期为T1;第二次只改变悬线长为L2,并测得此时单摆的振动周期为T2,根据测量数据导出重力加速度的表达式为g=$\frac{4{π}^{2}({L}_{1}-{L}_{2})}{{T}_{1}^{2}-{T}_{2}^{2}}$.

查看答案和解析>>

科目: 来源: 题型:选择题

18.在如图所示的电路中,电容器A的电容CA=30μF,电容器B的电容CB=10μF.在电键K1、K2都是断开的情况下,分别给电容器A、B充电.充电后,M点的电势比N点高5V,O点的电势比P点低5V.然后把K1、K2都接通,接通后M点的电势比N点高(  )
A.10V.B.5V.C.2.5V.D.4.0V

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m、带电量+q、重力不计的带电粒子,以初速度v1垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:
(1)粒子第一次经过电场的过程中电场力所做的功W1
(2)粒子第n次经过电场时电场强度的大小En
(3)粒子第n次经过电场所用的时间tn
(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).

查看答案和解析>>

科目: 来源: 题型:选择题

16.下列说法中正确的是 (  )
A.扩散运动就是布朗运动
B.液体表面层分子间距离大于液体内部分子间距离,故液体表面存在张力
C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体
D.气体如果失去了容器的约束就会散开,这是因为气体分子间斥力大于引力的缘故

查看答案和解析>>

科目: 来源: 题型:解答题

15.实际电流表有内阻,可等效为理想电流表与电阻的串联.测量实际电流表G1内阻r1的电路如图所示.供选择的仪器如下:
①待测电流表G1(0~5mA,内阻约300Ω);
②电流表G2(0~10mA,内阻约100Ω);
③定值电阻R1(300Ω);
④定值电阻R2(10Ω);
⑤滑动变阻器R3(0~1000Ω);
⑥滑动变阻器R4(0~20Ω);
⑦干电池(1.5V);
⑧电键S及导线若干.
(1)定值电阻应选③,滑动变阻器应选⑥.(在空格内填写序号)
(2)用连线连接实物图.
(3)补全实验步骤:
①按电路图连接电路,将滑动触头移至最左端(填“左”或“右”);
②闭合电键S,移动滑动触头至某一位置,记录G1、G2的读数I1、I2
③多次移动滑动触头,记录相应的G1、G2读数I1、I2
④以I2为纵坐标,I1为横坐标,作出相应图线,如图所示.
(4)根据I2-I1图线的斜率k及定值电阻,写出待测电流表内阻的表达式r1=(K-1)R1

查看答案和解析>>

科目: 来源: 题型:多选题

14.如图所示,固定在水平绝缘平面上足够长的金属导轨不计电阻,但表面粗糙,导轨左端连接一个电阻R,质量为m的金属棒(电阻也不计)放在导轨上,并与导轨垂直,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,用水平恒力F把ab棒从静止起向右拉动的过程中(  )
A.棒做匀加速运动
B.棒克服安培力做的功等于电路中产生的电能
C.恒力F和摩擦力的合力做的功等于电路中产生的电能和棒获得的动能之和
D.恒力F、摩擦力和安培力的合力做的功等于棒获得的动能

查看答案和解析>>

同步练习册答案