精英家教网> 试卷> 题目
绝密启用前 2017年普通高等学校招生全国统一考试 课标1理科数学 2017年全国1高考数学与2016全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题. 1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化

绝密启用前 2017年普通高等学校招生全国统一考试 课标1理科数学 2017年全国1高考数学与2016全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题. 1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化参考答案

12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数NN>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是

A.440              B.330              C.220              D.110

[答案]A

[解析]试题分析:由题意得,数列如下:

则该数列的前项和为

要使,有,此时,所以是之后的等比数列的部分和,即

所以,则,此时

对应满足的最小条件为,故选A.

[考点]等差数列、等比数列的求和.

[名师点睛]本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.

二、填空题:本题共4小题,每小题5分,共20分.

13.已知向量ab的夹角为60°,|a|=2,|b|=1,则| a +2 b |=        .

[答案]

14.设xy满足约束条件,则的最小值为        .

[答案]

15.已知双曲线C(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于MN两点.若∠MAN=60°,则C的离心率为________.

[答案]

[考点]双曲线的简单性质.

[名师点睛]双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是;③双曲线的顶点到渐近线的距离是.

16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.DEF为圆O上的点,△DBC,△ECA,△FAB分别是以BCCAAB为底边的等腰三角形.沿虚线剪开后,分别以BCCAAB为折痕折起△DBC,△ECA,△FAB,使得DEF重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.

[答案]

[考点]简单几何体的体积

[名师点睛]对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.

三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.

(一)必考题:共60分.

17.(12分)

ABC的内角ABC的对边分别为abc,已知△ABC的面积为   

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长.

[考点]三角函数及其变换.

[名师点睛]在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC,求二面角A-PB-C的余弦值.

所以二面角的余弦值为.

[考点]面面垂直的证明,二面角平面角的求解

[名师点睛]高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求的数学期望;

(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95

经计算得,其中为抽取的第个零件的尺寸,

用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计(精确到0.01).

附:若随机变量服从正态分布,则

试题解析:(1)抽取的一个零件的尺寸在之内的概率为0.9974,从而零件的尺寸在之外的概率为0.0026,故.因此

.

的数学期望为.

20.(12分)

已知椭圆C(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

(2)设直线P2A与直线P2B的斜率分别为k1k2

如果lx轴垂直,设lx=t,由题设知,且,可得AB的坐标分别为(t),(t).

,得,不符合题设.

从而可设l().将代入

由题设可知.

A(x1y1),B(x2y2),则x1+x2=x1x2=.

.

由题设,故.

.

解得.

当且仅当时,,欲使l,即

所以l过定点(2,)

[考点]椭圆的标准方程,直线与圆锥曲线的位置关系.

[名师点睛]椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简.

21.(12分)

已知函数.

(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.

(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.

22.[选修4―4:坐标系与参数方程](10分)

在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为

.

(1)若a=−1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

[解析]试题分析:(1)先将曲线和直线l化成普通方程,然后联立求出交点坐标;(2)直线的普通方程为,设上的点的距离为.对a进行讨23.[选修4-5:不等式选讲](10分)

已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.

(1)当a=1时,求不等式f(x)≥g(x)的解集;

(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.

[解析]

试题分析:(1)将代入,不等式等价于,对讨论,得出最值的解集;(2)当时,.若的解集包含