1、(广东卷)在同一平面直角坐标系中,函数和的图像关于直线对称.现将图像沿轴向左平移2个单位,再沿Y轴向上平移1个档位,所得的图像是由两条线段组成的折线(如图2所示),则函数的表达式为(A)
(A)
(B)
(C)(D)
2.(江苏卷)函数的反函数的解析表达式为(A)
(A) (B)
(C) (D)
3. (全国卷Ⅰ)反函数是(C )
(A) (B)
(C) (D)
4 (全国卷Ⅰ)设,函数,则使的的取值范围是(B )
(A) (B) (C)(D)
5. (全国卷Ⅰ)设,二次函数的图像为下列之一
则的值为 (C)
(A) (B) (C) (D)
6. (全国卷Ⅱ) 函数 反函数是( B )
(A) (B)= -
(C)= (D)=-
7. (全国卷Ⅱ)函数y=-1(X≤0)的反函数是 (B)
(A)y=(x≥-1) (B)y= -(x≥-1)
(C) Y=(x≥0) (d)Y= - (x≥0)
8.( 全国卷III)设,则(A )
(A)-2<x<-1 (B)-3<x<-2 (C)-1<x<0 (D)0<x<1
9. ( 全国卷III)若,则( C)
(A)a<b<c (B)c<b<a (C)c<a<b (D)b<a<c
10.(福建卷函数的图象如图,其中a、b为常数,则下列
结论正确的是 ( D )
A. B.
C. D.
11.(福建卷是定义在R上的以3为周期的偶函数,且,则方程=0在区间(0,6)内解的个数的最小值是 ( B )
A.5 B.4 C.3 D.2
12. (湖北卷)函数的图象大致是 ( D )
13. (湖北卷)在这四个函数中,当时,使恒成立的函数的个数是( B )
A.0 B.1 C.2 D.3
14. (湖南卷)函数f(x)=的定义域是 ( A )
A.-∞,0] B.[0,+∞ C.(-∞,0) D.(-∞,+∞)
15. (辽宁卷)函数)的反函数是 ( C )
A. B. C. D.
16. (辽宁卷)已知是定义在R上的单调函数,实数,
,若,则 ( A)
A. B. C. D.
17. (辽宁卷)一给定函数的图象在下列图中,并且对任意,由关系式得到的数列满足,则该函数的图象是( A )
18. (山东卷)函数的反函数图像大致是 ( B )
(A) (B) (C) (D)
19 (山东卷)下列函数既是奇函数,又在区间上单调递减的是(D )
(A)(B)(C)(D)
20. (山东卷)函数,若则的所有可能值为( C )
(A)1 (B) (C) (D)
21. (上海)若函数f(x)=, 则该函数在(-∞,+∞)上是 ( A )
(A)单调递减无最小值 (B) 单调递减有最小值
(C)单调递增无最大值 (D) 单调递增有最大值
22. (天津卷)设是函数的反函数,则使成立的x的取值范围为 (A )
A. B. C. D.
23. (天津卷)若函数在区间内单调递增,则a的取值范围是 (B )
A. B. C. D.
24.(浙江)设f(x)=|x-1|-|x|,则f[f()]=( D )
(A) - (B)0 (C) (D) 1
25.(重庆卷)若函数f(x)是定义在R上的偶函数,在上是减函数,且f(2)=0,则使得f(x)<0的x的取值范围是 (D )
(A) (-¥,2); (B) (2,+¥);
(C) (-¥,-2)È(2,+¥); (D) (-2,2)。
26.(江西卷)函数的定义域为 (A )
A.(1,2)∪(2,3) B.
C.(1,3) D.[1,3]
1、(广东卷)函数的定义域是{x|x<0}.
2.(江苏卷)函数的定义域为
3(江苏卷)若3a=0.618,a∈,k∈Z,则k= -1 .
4. (江苏卷)已知a,b为常数,若
则 2 .
5. (北京卷)对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1).f(x2);② f(x1.x2)=f(x1)+f(x2)③>0;
④.当f(x)=lgx时,上述结论中正确结论的序号是 ②③ .
6.(福建卷)把下面不完整的命题补充完整,并使之成为真命题.
若函数的图象与的图象关于 对称,则函数=
.
(注:填上你认为可以成为真命题的一种情形即可,不必考虑所有可能的情形)
(①x轴, ②y轴,)
③原点, ④直线
7(湖北卷).函数的定义域是 .
8. (湖南卷)设函数f(x)的图象关于点(1,2)对称,且存在反函数f-1(x),f (4)=0,则
f-1(4)=-2 .
9. (上海)函数f(x)=log4(x+1)的反函数f(x)= 4-1 .
10..(上海)方程4x+2x-2=0的解是 x=0 .
11. (天津卷)设f(x)是定义在R上的奇函数,且y=f (x)的图象关于直线对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_0_______________.
12. (江西卷)若函数是奇函数,则a= .
13.(浙江)函数y=(x∈R,且x≠-2)的反函数是.
解答题:
1、(广东卷)设函数在上满足,,且在闭区间[0,7]上,只有.
(Ⅰ)试判断函数的奇偶性;
(Ⅱ)试求方程=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.
.解:由f(2-x)=f(2+x),f(7-x)=f(7+x)得函数的对称轴为,
从而知函数不是奇函数,
由
,从而知函数的周期为
又,故函数是非奇非偶函数;
(II)由
(II) 又
故f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数在[0,2005]上有402个解,在[-2005.0]上有400个解,所以函数在[-2005,2005]上有802个解.
2. (全国卷Ⅰ)已知二次函数的二次项系数为,且不等式的解集为。(Ⅰ)若方程有两个相等的根,求的解析式;
(Ⅱ)若的最大值为正数,求的取值范围。
解:(Ⅰ)
①
由方程 ②
因为方程②有两个相等的根,所以,
即
由于代入①得的解析式
(Ⅱ)由
及
由 解得
故当的最大值为正数时,实数a的取值范围是
3. (北京卷)设f(x)是定义在[0, 1]上的函数,若存在x*∈(0,1),使得f(x)在[0, x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0, 1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,l]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(I)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x*,1)为含峰区间;
(II)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(I)所确定的含峰区间的长度不大于 0.5+r;
(III)选取x1,x2∈(0, 1),x1<x2,由(I)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.(区间长度等于区间的右端点与左端点之差)
解:(I)证明:设x*为f(x) 的峰点,则由单峰函数定义可知,f(x)在[0, x*]上单调递增,在[x*, 1]上单调递减.
当f(x1)≥f(x2)时,假设x*(0, x2),则x1<x2<x*,从而f(x*)≥f(x2)>f(x1),
这与f(x1)≥f(x2)矛盾,所以x*∈(0, x2),即(0, x2)是含峰区间.
当f(x1)≤f(x2)时,假设x*( x2, 1),则x*<≤x1<x2,从而f(x*)≥f(x1)>f(x2),
这与f(x1)≤f(x2)矛盾,所以x*∈(x1, 1),即(x1, 1)是含峰区间.
(II)证明:由(I)的结论可知:
当f(x1)≥f(x2)时,含峰区间的长度为l1=x2;
当f(x1)≤f(x2)时,含峰区间的长度为l2=1-x1;
对于上述两种情况,由题意得
①
由①得 1+x2-x1≤1+2r,即x1-x1≤2r.
又因为x2-x1≥2r,所以x2-x1=2r, ②
将②代入①得
x1≤0.5-r, x2≥0.5-r, ③
由①和③解得 x1=0.5-r, x2=0.5+r.
所以这时含峰区间的长度l1=l1=0.5+r,即存在x1,x2使得所确定的含峰区间的长度不大于0.5+r.
(III)解:对先选择的x1;x2,x1<x2,由(II)可知
x1+x2=l, ④
在第一次确定的含峰区间为(0, x2)的情况下,x3的取值应满足
x3+x1=x2, ⑤
由④与⑤可得,
当x1>x3时,含峰区间的长度为x1.
由条件x1-x3≥0.02,得x1-(1-2x1)≥0.02,从而x1≥0.34.
因此,为了将含峰区间的长度缩短到0.34,只要取
x1=0.34,x2=0.66,x3=0.32.
4(上海)已知函数f(x)=kx+b的图象与x、y轴分别相交于点A、B,( 、分别是与x、y轴正半轴同方向的单位向量), 函数g(x)=x2-x-6.
(1)求k、b的值;
(2)当x满足f(x)> g(x)时,求函数的最小值.
[解](1)由已知得A(,0),B(0,b),则={,b},于是=2,b=2. ∴k=1,b=2.
(2)由f(x)> g(x),得x+2>x2-x-6,即(x+2)(x-4)<0, 得-2<x<4,
==x+2+-5
由于x+2>0,则≥-3,其中等号当且仅当x+2=1,即x=-1时成立
∴的最小值是-3.
5,(上海)(本题满分18分)本题共有3个小题,第1小题满分4分, 第2小题满分8分, 第3小题满分6分.
对定义域分别是Df、Dg的函数y=f(x) 、y=g(x),
f(x).g(x) 当x∈Df且x∈Dg
规定: 函数h(x)= f(x) 当x∈Df且xDg
g(x) 当xDf且x∈Dg
(1) 若函数f(x)=-2x+3,x≥1; g(x)=x-2,x∈R,写出函数h(x)的解析式;
(2) 求问题(1)中函数h(x)的最大值;
(3) 若g(x)=f(x+α), 其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos2x,并予以证明.
6..[解](1)h(x)= (-2x+3)(x-2) x∈[1,+∞)
x-2 x∈(-∞,1)
(2) 当x≥1时, h(x)= (-2x+3)(x-2)=-2x2+7x-6=-2(x-)2+
∴h(x)≤;
当x<1时, h(x)<-1,
∴当x=时, h(x)取得最大值是
(3)令 f(x)=sinx+cosx,α=
则g(x)=f(x+α)= sin(x+)+cos(x+)=cosx-sinx,
于是h(x)= f(x).f(x+α)= (sinx+cosx)( cosx-sinx)=cos2x.
另解令f(x)=1+sinx, α=π,
g(x)=f(x+α)= 1+sin(x+π)=1-sinx,
于是h(x)= f(x).f(x+α)= (1+sinx)( 1-sinx)=cos2x.
7.(浙江)已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|;
(Ⅲ)若h(x)=g(x)-f(x)+1在[-1,1]上是增函数,求实数的取值范围.
解:(I)设函数的图象上任一点关于原点的对称点为,
则 即 .
∵点在函数的图象上.
即 故g(x)=.
(II)由可得:
当1时,
此时不等式无解。
当时,
因此,原不等式的解集为[-1, ].
(III)
① 当时,=在[-1,1]上是增函数,
②当时,对称轴的方程为
(i) 当时,,解得。
(ii) 当时,1时,解得
综上,
8.(江西卷)已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3, x2=4.(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式;.
解:(1)将得
(2)不等式即为
即
①当
②当
③.
9.(全国I)(1)设函数,求的最小值;
(2)设正数满足,
求证:
(Ⅰ)解:对函数求导数:
于是
当在区间是减函数,
当在区间是增函数.
所以时取得最小值,,
(Ⅱ)证法一:用数学归纳法证明.
(i)当n=1时,由(Ⅰ)知命题成立.
(ii)假定当时命题成立,即若正数,
则
当时,若正数
令
则为正数,且
由归纳假定知
①
同理,由可得
②
综合①、②两式
即当时命题也成立.
根据(i)、(ii)可知对一切正整数n命题成立.
证法二:
令函数
利用(Ⅰ)知,当
对任意
. ①
下面用数学归纳法证明结论.
(i)当n=1时,由(I)知命题成立.
(ii)设当n=k时命题成立,即若正数
由①得到
由归纳法假设
即当时命题也成立.
所以对一切正整数n命题成立.