10.已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是
A. B. C. D.
5.若焦点在轴上的椭圆的离心率为,则m=( )
A. B. C. D.
6、抛物线上的一点M到焦点的距离为1,则点M的纵坐标是( )
A. B. C. D.0
11、点在椭圆的左准线上,过点P且方向为的光线经直线反射后通过椭圆的左焦点,则这个椭圆的离心率为( )
A. B. C. D.
(12)设直线l:2x+y+2=0,关于原点对称的直线为l’,若l’与椭圆x2+y2=1的交点为A、B,点P为椭圆上的动点,则使△APB面积为的点P的个数为
(A)1(B)2(C)3(D)4
(5)设双曲线以椭圆长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为
(A) (B) (C) (D)
(6)从集合{1,2,3…,11}中任选两个元素作为椭圆方程中的m和n,则能组成落在矩形区域B={(x,y)| |x|<11且|y|<9}内的椭圆个数为
(A)43 (B) 72 (C) 86 (D) 90
1.圆关于原点(0,0)对称的圆的方程为 ( )
A. B.
C. D.
2.点(1,-1)到直线x-y+1=0的距离是( )
(A) (B) (C) (D)
(4)从原点向圆 x2+y2-12y+27=0作两条切线,则该圆夹在两条切线间的劣弧长为
(A)π (B)2π (C)4π (D)6π
13.过双曲线(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.
5.双曲线离心率为2,有一个焦点与抛物线的焦点重合,则mn的值为 ( )
A. B. C. D.
7.已知双曲线-=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为(O为原点),则两条渐近线的夹角为 ( )
A.30º B.45º C.60º D.90º
13.已知直线ax+by+c=0与圆O:x2+y2=1相交于A、B两点,且|AB|=,则 = .
(6)已知双曲线 - = 1的焦点为F1、、F2,点M在双曲线上且MF1 ⊥ x轴,则F1到直线F2 M的距离为
(A) (B) (C) (D)
(14)设双曲线x2-y2=1(a>0,b>0)的右交点为F,右准线l与两条渐近线交于P、Q两点,若△PQF是直角三角形,则双曲线的离心率e=____________________。
16.以下同个关于圆锥曲线的命题中
①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;
②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若则动点P的轨迹为椭圆;
③方程的两根可分别作为椭圆和双曲线的离心率;
④双曲线有相同的焦点.
其中真命题的序号为 (写出所有真命题的序号)
22.(本小题满分14分)
如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.
(1)求△APB的重心G的轨迹方程.
(2)证明∠PFA=∠PFB.
19.(本小题满分14分)
已知椭圆C:+=1(a>b>0)的左.右焦点为F1、F2,离心率为e. 直线
l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设=λ.
(Ⅰ)证明:λ=1-e2;
(Ⅱ)确定λ的值,使得△PF1F2是等腰三角形.
21)(本小题满分14分)
P、Q、M、N四点都在椭圆上,F为椭圆在y轴正半轴上的焦点.已知与 共线, 与共线,且 . = 0.求四边形PMQN 的面积的最小值和最大值.
(21)(本小题满分14分)
抛物线C的方程为,过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)B(x2,y2)两点(P,A,B三点互不相同),且满足。
(Ⅰ)求抛物线C的焦点坐标和准线方程
(Ⅱ)设直线AB上一点M,满足,证明线段PM的中点在y轴上
(Ⅲ)当=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围
21.(本小题满分12分)
已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(Ⅰ)求双曲线C2的方程;
(Ⅱ)若直线与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围.
17.如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l1:x=m(|m|>1),P为l1上的动点,使∠F1PF2最大的点P记为Q,求点Q的坐标(用m表示).
19、(本小题满分12分)如图,圆与圆的半径都是1,,过动点P分别作圆、圆的切线PM、PN(M、N分别为切点),使得。试建立适当的坐标系,并求动点P的轨迹方程。
.
22)(本小题满分14分)
已知动圆过定点(,0),且与直线x=-相切,其中p>0。
(Ⅰ)求动圆圆心的轨迹C的方程;
(Ⅱ)设A、B是轨迹C上异于原点O的两个不同点,直线OA和 OB的倾斜角分别为α和β,当α、β变化且α+β为定值θ(0<θ<π)时,求证直线AB恒过定点,并求出该定点的坐标。
21.(本小题满分12分)
已知方向向量为n =(1,)的直线过点(0,-2)和椭圆C:的焦点,且椭圆C的中心关于直线的对称点在椭圆C的右准线上。
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于
点M、N,满足
(为坐标原点)。若存在,求出直线m的方程;
若不存在,请说明理由。
17.(本小题满分14分)
在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图4所示).
(Ⅰ)求△AOB的重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ)△AOB的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
21.(本小题满分12分)
设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.
(Ⅰ)确定的取值范围,并求直线AB的方程;
(Ⅱ)试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由.
(此题不要求在答题卡上画图)
20.(本小题满分14分)
在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图5所示).将矩形折叠,使A点落在线段DC上.
(Ⅰ)若折痕所在直线的斜率为k,试写出折痕所在直线的方程;
(Ⅱ)求折痕的长的最大值.
(18)(本小题共14分)
如图,直线 l1:y=kx(k>0)与直线l2:y=-kx之间的阴影区域(不含边界)记为W,其左半部分记为W1,右半部分记为W2.
(I)分别用不等式组表示W1和W2;
(II)若区域W中的动点P(x,y)到l1,l2的距离之积等于d2,求点P的轨迹C的方程;
(III)设不过原点O的直线l与(II)中的曲线C相交于M1,M2两点,且与l1,l2分别交于M3,M4两点.求证△OM1M2的重心与△OM3M4的重心重合.