1.关于DNA分子结构的叙述不正确的是 ( )
A.每个DNA分子一般都含有4种脱氧核苷酸
B.一个DNA分子中的碱基、磷酸、脱氧核苷酸、脱氧核糖的数目是相等的
C.每个脱氧核糖上均连着一个磷酸和一个碱基
D.双链DNA分子中的一段,如果有40个腺嘌呤,就一定同时含有40个胸腺嘧啶
解析 在DNA分子长链中间的每个脱氧核糖均连接一个碱基和两个磷酸基团,链端的脱氧核糖只连接一个碱基和一个磷酸基团。
答案 C
2.已知病毒的核酸有双链DNA、单链DNA、双链RNA、单链RNA四种类型。现发现一种新病毒,要确定其核酸属于哪一种类型,应该
( )
A.分析碱基类型,确定碱基比例
B.分析蛋白质的氨基酸组成,确定五碳糖类型
C.分析碱基类型,确定五碳糖类型
D.分析蛋白质的氨基酸组成,确定碱基类型
解析 DNA的碱基组成是A、T、G、C,RNA的碱基组成是A、U、G、C;含T的一定是DNA,含U的一定是RNA;双链DNA的碱基A=T,G=C;双链RNA的碱基A=U,G=C;单链DNA和单链RNA的碱基没有一定的比例。
答案 A
3.对某一噬菌体的DNA用32P标记,对细菌的氨基酸用15N标记,让已标 记的噬菌体去侵染已标记的细菌,最后释放出200个噬菌体,则下列说法正确的是 ( )
A.全部噬菌体都有标记的32P
B.2个噬菌体含32P
C.全部噬菌体都不含15N
D.2个噬菌体含15N
解析 构成子代噬菌体DNA和蛋白质的原料都来自细菌,噬菌体在侵染细菌的时候把蛋白质外壳留在细菌的外面,进入细菌体内的是DNA,然后以自己的DNA为模板利用细菌的脱氧核苷酸合成子代噬菌体的DNA,而DNA复制是半保留复制,原来标记的DNA两条链最多形成两个DNA到子代噬菌体内。子代噬菌体蛋白质是在噬菌体DNA指导下以细菌的氨基酸为原料合成的,因此所有噬菌体均含15N。
答案 B
4.下列有关染色体、DNA、基因、脱氧核苷酸的说法,不正确的是
( )
A.基因一定位于染色体上
B.基因在染色体上呈线性排列
C.四种脱氧核苷酸的数目和排列顺序决定了基因的多样性和特异性
D.一条染色体上含有1个或2个DNA分子
解析 基因是具有遗传效应的DNA片段,DNA不一定位于染色体上,因此基因不一定位于染色体上,故A错误;多个基因位于同一条染色体上,基因在染色体上呈线性排列,故B正确;不同基因中脱氧核苷酸的数目和排列顺序不同,基因具有多样性,而每一个基因中脱氧核苷酸的数目和排列顺序是特定的,因此基因又具有特异性,故C正确;没有复制的每条染色体含有1个DNA分子,复制后的每条染色体含有2条染色单体,每条染色单体含有1个DNA分子,故D正确。
答案 A
5.如图为果蝇某一条染色体上的几个基因示意图,有关叙述正确的是
( )
A.R基因中的全部脱氧核苷酸序列都能编码蛋白质
B.R、S、N、O互为非等位基因
C.果蝇的每个基因都是由成百上千个核糖核苷酸组成的
D.每个基因中有一个碱基对的替换,都会引起生物性状的改变
解析 R基因中的全部脱氧核苷酸序列不一定都能编码蛋白质,如非编码区和内含子不能编码蛋白质;R、S、N、O控制果蝇不同的性状,互为非等位基因;基因的基本组成单位是脱氧核苷酸;由于密码子具有简并性,基因中有一个碱基对的替换,不一定会引起生物性状的改变。
答案 B
6.假定某高等生物体细胞的染色体数是10条,其中染色体中的DNA用3H胸腺嘧啶标记,将该体细胞放入不含有标记的培养液中连续培养2代,则在形成第2代细胞时的有丝分裂后期,没有被标记的染色体数为 ( )
A.5 B.40
C.20 D.10
解析 根据DNA半保留复制的特点,DNA双链被3H标记,在不含3H标记的培养液中完成第一次分裂后,每条染色体的DNA中一条链有3H标记,另一条链没有标记。在不含3H标记的培养液中进行第二次分裂,后期一半染色体被标记,一半染色体没有被标记。
答案 D
7.下图表示DNA复制的过程,结合图示下列有关叙述不正确的是
( )
A.DNA复制过程中首先需要解旋酶破坏DNA双链之间的氢键,使两条链解开
B.DNA分子的复制具有双向复制的特点,生成的两条子链的方向相反
C.从图示可知,DNA分子具有多起点复制的特点,缩短了复制所需的时间
D.DNA分子的复制需要DNA聚合酶将单个脱氧核苷酸连接成DNA片段
解析 虽然DNA具有多起点复制的特点,但图中所示每条链只沿一个起点在复制。
答案 C
8.DNA分子中胸腺嘧啶的数量为M,占总碱基数的比例为q,若此DNA分子连续复制n次需要的鸟嘌呤脱氧核苷酸为 ( )
A.(2n-1)M B.M(1/2q-1)
C.(2n-1)M(1-2q)/2q D.(2n-1)M/2nq
解析 由胸腺嘧啶的数量和占总碱基数的比例可知:该DNA分子的总碱基数为M/q,因“任意两个不互补的碱基数之和占总碱基数的一半”,故该DNA分子中鸟嘌呤的数量=M/2q-M=M(1/2q-1)个;DNA分子复制n次,新增DNA分子的数量=2n-1个,故该DNA分子复制n次需要消耗的鸟嘌呤脱氧核苷酸数=(2n-1)×M(1/2q-1)=(2n-1)M(1-2q)/2q个。
答案 C
9.下列有关计算中,错误的是 ( )
A.用32P标记的噬菌体在未标记的大肠杆菌内增殖3代,具有放射性的噬菌体占总数为1/4
B.某DNA片段有300个碱基对,其中一条链上A+T比例为35%,则第三次复制该DNA片段时,需要780个胞嘧啶脱氧核苷酸
C.若某蛋白质分子中含有120个氨基酸,则控制合成该蛋白质的基因中至少有720个碱基
D.用15N标记的细胞(含8条染色体)在含14N的培养基中培养,第二次分裂中期和后期含15N的染色体数分别是8和16
解析 复制3次,含32P的噬菌体占2/8=1/4;该片段中C=G=195,第3次复制需C=195×23-1=780;基因中碱基数至少是蛋白质中氨基酸数的6倍;含15N的为亲代DNA分子的链,细胞一次分裂后,所有染色体(DNA)都含有15N,而细胞第二次分裂时,只有一半的DNA分子含有15N,即细胞第二次分裂中期含15N的染色体8条,第二次分裂后期染色单体分开后,含15N的染色体仍然为8条。
答案 D
10.如图所示为DNA分子复制的片段,图中a、b、c、d表示各条脱氧核苷酸链。一般地说,下列各项中正确的是
( )
A.a和c的碱基序列互补,b和c的碱基序列相同
B.a链中的值与d链中同项比值相同
C.a链中的值与b链中同项比值相同
D.a链中的值与c链中同项比值相同
解析 DNA复制的特点是半保留复制,b链是以a链为模板合成的,a链和b链合成一个子代DNA分子。a链中的值等于b链中的值。
答案 C
11.在一定温度下,DNA双链会解旋成单链,即发生DNA变性。Tm是DNA的双螺旋有一半发生热变性时相应的温度。如图表示DNA分子中的G-C含量与DNA的Tm之间的关系曲线(EDTA对DNA分子具有保护作用),下列叙述中不正确的是
( )
A.DNA的Tm值受到G-C含量的影响
B.DNA的Tm值受到离子浓度的影响
C.双链DNA热变性与解旋酶的催化作用有关
D.双链DNA热变性后不改变其中的遗传信息
解析 在一定温度下,DNA双链会解旋成单链,这与解旋酶无关;DNA双链解旋成单链后,遗传信息不会改变。
答案 C
12.用15N标记细菌的DNA分子,再将它们放入含14N的培养基上连续繁殖4代,a、b、c为三种DNA分子:a只含15N,b同时含有15N和14N,c只含14N。下图中这三种DNA分子的比例正确的是
( )
解析 一个含15N的DNA在含14N的培养基上连续复制4次,产生16个DNA分子,由于是半保留复制,其中只含15N的DNA分子数为0,同时含有15N和14N的DNA分子有2个,只含14N的DNA分子有14个。
答案 B
13.如图为真核生物DNA的结构(图甲)及发生的生理过程(图乙),请据图回答问题:
(1)图甲为DNA的结构示意图,其基本骨架由________和________(填序号)交替排列构成,④为________。
(2)图乙为________过程,发生的时期为________。从图示可看出,该过程是从________起点开始复制的,从而________复制速率;图中所示的酶为________酶,作用于图甲中的________(填序号)。
(3)5-BrU(5-溴尿嘧啶)既可以与A配对,又可以与C配对。将一个正常的具有分裂能力的细胞,接种到含有A、G、C、T、5-BrU五种核苷酸的适宜培养基上,至少需要经过________次复制后,才能实现细胞中某DNA分子某位点上碱基对从T—A到C—G的替换。
解析 (1)在DNA的结构中,磷酸和脱氧核糖交替排列构成DNA的基本骨架,①为磷酸,②为脱氧核糖,③为胞嘧啶,三者构成胞嘧啶脱氧核苷酸。(2)图乙为DNA的复制过程,主要在细胞核中进行,在线粒体和叶绿体中也存在该过程,其发生在有丝分裂间期和减数分裂前的间期;从图中可以看出,DNA复制是边解旋边复制的,且从多个起点开始,这种复制方式提高了复制的速率;图中的酶为DNA解旋酶,作用于氢键,即图甲中的⑨。(3)用B表示5-溴尿嘧啶,过程如下:
答案 (1)① ② 胞嘧啶脱氧核苷酸
(2)DNA复制 有丝分裂间期和减数分裂前的间期 多个 提高 DNA解旋 ⑨ (3)3
14.真核细胞的染色体,只有在两端的一段特殊碱基序列保持完整时,才能正常进行复制。这一段特殊的碱基序列叫做端粒。
(1)有人做了下面与端粒有关的实验:取酵母菌的质粒DNA,将其环形结构在特定部位切开,形成线形结构。结果该质粒DNA失去自我复制能力;将酵母菌染色体上的端粒 切下,连接到上述线形质粒DNA上,该线形质粒DNA恢复了自我复制能力。据此完成下列问题:
①写出该实验的目的:_____________________________________。
②上述实验中使用的科学技术属于________________;使用的酶的名称是 ______________________________________________________________。
③上述实验的结论是:酵母菌中端粒具有__________________功能;如果要证明上述结论在动物界具有普遍性,还需要观察研究__________________;在此基础上得出结论的推理方法叫__________________________________。
(2)科学研究发现,端粒的长短与细胞中染色体DNA的复制次数有关。随着DNA复制次数的增加,端粒越来越短。当短到一定程度时,DNA将不再复制。这是一个普遍现 象;进一步研究还发现,有一种RNA和蛋白质的复合物,叫做端粒酶。端粒酶中的RNA是修复端粒的模板;端粒酶可以使已经缩短的端粒结构恢复到原来状态。请回答下列问题:
①简述端粒酶催化的反应过程:__________________;人体的大多数正常体细胞中,端粒酶__________________(填“有”或“无”)活性。
②请你根据上面有关端粒和端粒酶的描述,写出与端粒酶应用有关的生物学原理:可以通过______________开发出抗癌新药;可以通过_______________开辟延缓细胞衰老的新途径。
解析 (1)由题干信息可知,该实验的目的是探究端粒对质粒DNA复制的影响。实验结 论是端粒具有控制DNA复制的功能。(2)由材料可知,端粒酶能以RNA为模板,逆转录生成端粒DNA。正常细胞中,端粒酶没有活性。故随分裂次数增多,端粒将变短。
答案 (1)①探究端粒对质粒DNA复制的影响 ②基因工程 限制性内切酶和DNA连接酶 ③控制DNA复制 多种动物细胞中端粒对DNA复制的影响 归纳法
(2)①以RNA为模板,合成端粒DNA 无 ②抑制端粒酶活性 促进端粒酶活性
15.DNA的复制方式,可以通过设想来进行预测,可能的情况是全保留复制、半保留复制、分散(弥散)复制三种。究竟是哪种复制方式呢?下面设计实验来证明DNA的复制方式。
实验步骤:
a.在氮源为14N的培养基中生长的大肠杆菌,其DNA分子均为14NDNA(对照)。
b.在氮源为15N的培养基中生长的大肠杆菌,其DNA分子均为15NDNA(亲代)。
c.将亲代15N大肠杆菌转移到氮源为含14N的培养基中,再连续繁殖两代(Ⅰ和Ⅱ),用密度梯度离心法分离,不同分子量的DNA分子将分布在试管中的不同位置上。
实验预测:
(1)如果与对照(14N/14N)相比,子代Ⅰ能分辨出两条DNA带:一条________带和一条________带,则可以排除________。
(2)如果子代Ⅰ只有一条中密度带,则可以排除________,但不能肯定是________。
(3)如果子代Ⅰ只有一条中密度带,再继续做子代ⅡDNA密度鉴定:若子代Ⅱ可以分出________和________,则可以排除分散复制,同时肯定半保留复制;如果子代Ⅱ不能分出________密度两条带,则排除________,同时确定为________。
解析 从题目中的图示可知,深色为亲代DNA的脱氧核苷酸链(母链),浅色为新形成的子代DNA的脱氧核苷酸链(子链)。因此全保留复制后得到的两个DNA分子,一个是原来的两条母链重新形成的亲代DNA分子,一个是两条子链形成的子代DNA分子;半保留复制后得到的每个子代DNA分子的一条链为母链,一条链为子链;分散复制后得到的每个子代DNA分子的单链都是由母链片段和子代片段间隔连接而成的。
答案 (1)轻(14N/14N) 重(15N/15N) 半保留复制和分散复制 (2)全保留复制 半保留复制或分散复制 (3)一条中密度带 一条轻密度带 中、轻 半保留复制 分散复制