2. 空间图形的斜二测画法:
(1) 讨论:如何用斜二测画法画空间图形?
例2 用斜二测画法画长4cm、宽3cm、高2cm的长方体ABCD-A’B’C’D’的直观图.
(师生共练,建系→取点→连线,注意变与不变; 小结:画法步骤)
画法:
①
画轴。如图1.2-12,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=450,∠xOz=900.
②
画底面。以点O为中点,在x轴上取线段MN,使MN=4cm;在y轴上取线段PQ,使PQ=cm.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A,B,C,D,四边形ABCD就是长方体的底面ABCD.
③
画侧棱。过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别取2cm长的线段AA’,BB’,CC’,DD’.
④
成图。顺次连接A’,B’,C’,D’,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图。
(2)思考:如何根据三视图,用斜二测画法画它的直观图?
例3 如图1.2-13,已知几何体的三视图,用斜二测画法画出它的直观图。
分析:有几何体的三视图知道,这个几何体是一个简单组合体。它的下部是一个圆柱,上部是一个圆锥,并且圆锥的底面与圆柱的上底面重合。我们可以先画出下部的圆柱,再画出上部的圆锥。
画法:
①
画轴。如图1.2-14(1),画x轴、z轴,使∠xOz=900。
②
画圆柱的下底面。在x轴上取A,B两点,使AB的长度等于俯视图中圆的直径,且OA=OB。选择椭圆模板中适当的椭圆过A,B两点,使它为圆柱的下底面。
③
在Oz上截取点O’,使OO’等于正视图中OO’的长度,过点O’作平行于轴Ox的轴O’x’,类似圆柱下底面的作法作出圆柱的上底面。
④
画圆锥的顶点。在Oz上截取点P,使PO’等于正视图中相应的高度。
⑤
成图。连接PA’,PB’,AA’,BB’,整理得到三视图表示的几何体的直观图(图1.2-14(2))
强调:用斜二测画法画图,注意正确把握图形尺寸大小的关系。
(3)讨论:三视图与直观图有何联系与区别?
空间几何体的三视图与直观图有密切联系. 三视图从细节上刻画了空间几何体的结构,根据三视图可以得到一个精确的空间几何体,得到广泛应用(零件图纸、建筑图纸). 直观图是对空间几何体的整体刻画,根据直观图的结构想象实物的形象.