网址:http://www.1010jiajiao.com/paper/timu/4037594.html[举报]
(三)、知识应用与解题研究:
例1.判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径。
学生自己分析探求解决途径:①、用配方法将其变形化成圆的标准形式。②、运用圆的一般方程的判断方法求解。但是,要注意对于来说,这里的
.
解:
例2.(课本例4)求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。
分析:据已知条件,很难直接写出圆的标准方程,而圆的一般方程则需确定三个系数,而条件恰给出三点坐标,不妨试着先设出圆的一般方程
解:设所求的圆的方程为:
∵在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于的三元一次方程组.
即
解此方程组,可得:
∴所求圆的方程为:
;
得圆心坐标为(4,-3).
或将左边配方化为圆的标准方程,,从而求出圆的半径,圆心坐标为(4,-3)
学生讨论交流,归纳得出使用待定系数法的一般步骤:
①、根据提设,选择标准方程或一般方程;
②、根据条件列出关于a、b、r或D、E、F的方程组;
③、解出a、b、r或D、E、F,代入标准方程或一般方程。
例3、已知线段AB的端点B的坐标是(4,3),端点A在圆上
运动,求线段AB的中点M的轨迹方程。
分析:如图点A运动引起点M运动,而点A在已知圆上运动,点A的坐标满
足方程。建立点M与点A坐标之间的关系,就可以建立点M的坐标满足的条件,求出点M的轨迹方程。
解:设点M的坐标是(x,y),点A的坐标是
①
上运动,所以点A的坐标满足方程,即②
把①代入②,得
课堂练习: 第1、2、3题
课堂小结 :
1.对方程的讨论(什么时候可以表示圆)
2.与标准方程的互化
3.用待定系数法求圆的方程
4.求与圆有关的点的轨迹。
课后作业:课本习题4.1A组第6题,B组第1,2题
课后记:
课题:直线与圆的位置关系(第一课时)
课 型:新授课
教学目标:1、理解直线与圆的位置的种类;
2、利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;
3、会用点到直线的距离来判断直线与圆的位置关系.
教学重点:直线与圆的位置关系的几何图形及其判断方法
教学难点:用坐标法判断直线与圆的位置关系.
教学过程: