1.例1.在正方体ABCD-A1B1C1D1中,E、F、G、H分别为棱BC、CC1、C1D1、AA1的中点,O为AC与BD的交点(如图),求证:(1)EG∥平面BB1D1D;(2)平面BDF∥平面B1D1H;(3)A1O⊥平面BDF;(4)平面BDF⊥平面AA1C。
解析:
(1)欲证EG∥平面BB1D1D,须在平面BB1D1D内找一条与EG平行的直线,构造辅助平面BEGO’及辅助直线BO’,显然BO’即是。
(2)按线线平行线面平行面面平行的思路,在平面B1D1H内寻找B1D1和O’H两条关键的相交直线,转化为证明:B1D1∥平面BDF,O’H∥平面BDF。
(3)为证A1O⊥平面BDF,由三垂线定理,易得BD⊥A1O,再寻A1O垂直于平面BDF内的另一条直线。
猜想A1O⊥OF。借助于正方体棱长及有关线段的关系计算得:A1O2+OF2=A1F2A1O⊥OF。
(4)∵ CC1⊥平面AC
∴ CC1⊥BD
又BD⊥AC
∴ BD⊥平面AA1C
又BD平面BDF
∴ 平面BDF⊥平面AA1C
评注:化“动”为“定”是处理“动”的思路