9.[2015凉山州]在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).
(1)用树状图或列表法列举点M所有可能的坐标;
(2)求点M(x,y)在函数的图象上的概率;
(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.
[答案](1)答案见试题解析;(2);(3).
[解析]
试题分析:(1)用树状图法展示所有9种等可能的结果数;
(2)根据一次函数图象上点的坐标特征,从9个点中找出满足条件的点,然后根据概率公式计算;
(3)利用点与圆的位置关系找出圆上的点和圆外的点,由于过这些点可作⊙O的切线,则可计算出过点M(x,y)能作⊙O的切线的概率.
试题解析:(1)画树状图:
共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);
[考点定位]1.列表法与树状图法;2.一次函数图象上点的坐标特征;3.切线的性质;4.综合题.