网址:http://www.1010jiajiao.com/paper/timu/5146201.html[举报]
21.根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在的两定点,使得点P到两点距离的和为定值.
按题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)设
由此有E(2,4ak),F(2-4k,4a),G(-2,4a-4ak)直线OF的方程为:①
直线GE的方程为:②
从①,②消去参数k,得点P(x,y)坐标满足方程
整理得 当时,点P的轨迹为圆弧,所以不存在符合题意的两点.
当时,点P轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长。
当时,点P到椭圆两个焦点(的距离之和为定值。
当时,点P 到椭圆两个焦点(0, 的距离之和为定值2.
[模拟试题]
[试题答案]
1. A 2. C 3. 4. A 5. B 6.
7. C 8. B
9. 证明:(1)令,得
即
所以抛物线交x轴于定点M
(2)由(1)知,在抛物线方程中
又令得
所以直线PN的斜率是一个定值。
(3)由(2)知
当时,的面积最小,其最小面积为1。