5. n次独立重复实验中事件A发生k次的概率: 。
复习这部分内容及解答此类问题首先必须使学生明确判断两点:(1)对于每个随机实验来说,所有可能出现的实验结果数n必须是有限个;(2)出现的所有不同的实验结果数m其可能性大小必须是相同的。只有在同时满足(1)、(2)的条件下,运用等可能事件的概率计算公式P(A)=m/n得出的结果才是正确的。而事件间得的“互相排斥”与“相互独立”是学生理解的一个难点,能否准确判断事件之间是否互相排斥或相互独立,正确理解“和事件”或“积事件”的意义,是考查的又一个重点,学生常因为混淆不清而导致计算错误。在同一实验中两事件的“互相排斥”是指两个事件不可能同时发生;两事件“相互独立”是指一个事件发生与否对另一个事件发生的概率没有影响。在实际运用中我们常常不是根据定义来判断事件的独立性,而是应用实验的方法,由实验的独立性去判断事件的独立性。而在应用题背景条件下,能否把一个复杂事件分解为若干个互相排斥或相互独立、既不重复又不遗漏的简单事件是解答这类应用题的关键,也是考查学生分析问题、解决问题的能力的重要环节。
例题1:某零件从毛坯到成品,一共要经过6道自动加工工序。如果各道工序出次品的概率依次为0.01、0.02、0.03、0.03、0.05、0.05,那么这种零件的次品率是多少?
错解:设第i道工序出次品的事件为Ai,i=1、2、…、6,Ai是互斥事件,则Ai中至少有一个事件发生就为次品,故这种零件的次品率为P(A1+A2+…+A6)=P(A1)+P(A2)+…+P(A6)=0.19。
分析:错误原因是将相互独立的事件看成互斥事件。由题意可知,只有同时经过6道工序才能将事件完成,不能只考虑一道工序是否通过。
设第i道工序出现次品的事件记为Ai,i=1、2、…、6,它们相互独立但不互斥,则Ai中至少有一个事件发生就出现次品,所以该种零件的次品率为P(A1+A2+…+A6)
=1-
。
又如:某家庭电话在家中有人时,打进的电话响第1声时被接的概率为0.1,响第2声时被接的概率为0.3,响第3声时被接的概率为0.4,响第4声时被接的概率为0.1。那么该电话在前4声内被接的概率是多少?
例题2、从原点出发的某质点M,按照向量移动的概率为2/3,按照向量移动的概率为1/3。设M可到达点(0,n)的概率为Pn。
(1)求P1
,P2;
(2)求证:;
(3)求Pn的表达式。
解析:(1)点M到达点(0,1)的概率,点M到达点(0,2)的事件由两个互斥的事件组成:①“点M先按向量移动到达点(0,1),再按向量平移到达点(0,2)”,此时概率为;②“点M按向量移动直接到达(0,2)”,此时的概率为。于是所求的概率为:
。
(2)M点到达(0,n+2)由两个互斥的事件组成:①“从点(0,n+1)按向量移动”,此时概率为;②“从点(0,n)按向量移动”此时概率为。于是,即。
(3)由(2)可知,数列{Pn+2-Pn+1}是以P2-P1=1/9为首项,公比为-1/3的等比数列,即,故。
例题3、设棋子在正四面体ABCD的表面从一个顶点移向另外三个顶点是等可能的。现投掷骰子根据其点数决定棋子是否移动:若投出的点数是奇数,则棋子不动;若投出的点数是偶数,棋子移动到另一个顶点。若棋子的初始位置在顶点A,回答下列问题。
(1)投了2次骰子,棋子才到达顶点B的概率是多少?
(2)投了3次骰子,棋子恰好在顶点B的概率是多少?
分析:棋子从顶点A移动到顶点B,C,D的概率都是1/6,而不移动的概率是3/6=1/2。
(1)分两种情形:①第一次不动,第二次移到B,即;②两次都动,即或,故投了2次骰子,棋子才到达顶点B的概率为
。
(2)①两次停在相同顶点:、、;②一次停在相同顶点:、、、、、;③每次都向其它顶点移动:、
、、、、、。故投3次骰子,棋子恰好在顶点B的概率是。