网址:http://www.1010jiajiao.com/paper/timu/5153878.html[举报]
17.(本小题满分12分)
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(I)任选1名下岗人员,求该人参加过培训的概率;
(II)任选3名下岗人员,记为3人中参加过培训的人数,求的分布列和期望.
数学(理工农医类)参考答案
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.C 2.D 3.B 4.A 5.C 6.B 7.C 8.D 9.D 10.B
二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上.
11.
12.
13.
14.(1)(2)
15.,32
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.解:(I)由题设知.
因为是函数图象的一条对称轴,所以,
即().
所以.
当为偶数时,,
当为奇数时,.
(II)
.
当,即()时,
函数是增函数,
故函数的单调递增区间是().
17.解:任选1名下岗人员,记“该人参加过财会培训”为事件,“该人参加过计算机培训”为事件,由题设知,事件与相互独立,且,.
(I)解法一:任选1名下岗人员,该人没有参加过培训的概率是
所以该人参加过培训的概率是.
解法二:任选1名下岗人员,该人只参加过一项培训的概率是
该人参加过两项培训的概率是.
所以该人参加过培训的概率是.
(II)因为每个人的选择是相互独立的,所以3人中参加过培训的人数服从二项分布,,,即的分布列是
|
0 |
1 |
2 |
3 |
|
0.001 |
0.027 |
0.
243 |
0.729 |
的期望是.
(或的期望是)
18.解:解法一:(I)因为平面平面,平面平面,,平面,所以平面,又平面,所以平面平面.
(II)过点作于点,连结.
由(I)的结论可知,平面,
所以是和平面所成的角.
因为平面平面,平面平面,,
平面,所以平面,故.
因为,,所以可在上取一点,使,又因为,所以四边形是矩形.
由题设,,,则.所以,,
,.
因为平面,,所以平面,从而.
故,.
又,由得.
故.
即直线与平面所成的角是.
解法二:(I)因为平面平面,平面平面,,
平面,所以平面,从而.又,所以平面.因为平面,所以平面平面.
(II)由(I)可知,平面.故可以为原点,分别以直线为轴、轴、轴建立空间直角坐标系(如图),
由题设,,,则,
,,相关各点的坐标分别是,
,,.
所以,.
设是平面的一个法向量,
由得故可取.
过点作平面于点,因为,所以,于是点在轴上.
因为,所以,.
设(),由,解得,
所以.
设和平面所成的角是,则
.
故直线与平面所成的角是.
19.解:(I)如图,,,,
由三垂线定理逆定理知,,所以是
山坡与所成二面角的平面角,则,
.
设,.则
.
记总造价为万元,
据题设有
当,即时,总造价最小.
(II)设,,总造价为万元,根据题设有
.
则,由,得.
当时,,在内是减函数;
当时,,在内是增函数.
故当,即(km)时总造价最小,且最小总造价为万元.
(III)解法一:不存在这样的点,.
事实上,在上任取不同的两点,.为使总造价最小,显然不能位于 与之间.故可设位于与之间,且=,,,总造价为万元,则.类似于(I)、(II)讨论知,,,当且仅当,同时成立时,上述两个不等式等号同时成立,此时,,取得最小值,点分别与点重合,所以不存在这样的点 ,使沿折线修建公路的总造价小于(II)中得到的最小总造价.
解法二:同解法一得
.
当且仅当且,即同时成立时,取得最小值,以上同解法一.
20.解:由条件知,,设,.
解法一:(I)设,则则,,
,由得
即
于是的中点坐标为.
当不与轴垂直时,,即.
又因为两点在双曲线上,所以,,两式相减得
,即.
将代入上式,化简得.
当与轴垂直时,,求得,也满足上述方程.
所以点的轨迹方程是.
(II)假设在轴上存在定点,使为常数.
当不与轴垂直时,设直线的方程是.
代入有.
则是上述方程的两个实根,所以,,
于是
.
因为是与无关的常数,所以,即,此时=.
当与轴垂直时,点的坐标可分别设为,,
此时.
故在轴上存在定点,使为常数.
解法二:(I)同解法一的(I)有
当不与轴垂直时,设直线的方程是.
代入有.
则是上述方程的两个实根,所以.
.
由①②③得.…………………………………………………④
.……………………………………………………………………⑤
当时,,由④⑤得,,将其代入⑤有
.整理得.
当时,点的坐标为,满足上述方程.
当与轴垂直时,,求得,也满足上述方程.
故点的轨迹方程是.
(II)假设在轴上存在定点点,使为常数,
当不与轴垂直时,由(I)有,.
以上同解法一的(II).
21.解:(I)当时,由已知得.
因为,所以. …… ①
于是. ……②
由②-①得. …… ③
于是. …… ④
由④-③得, …… ⑤
所以,即数列是常数数列.
(II)由①有,所以.由③有,,所以,.
而 ⑤表明:数列和分别是以,为首项,6为公差的等差数列,
所以,,,
数列是单调递增数列且对任意的成立.
且
.
即所求的取值集合是.
(III)解法一:弦的斜率为
任取,设函数,则
记,则,
当时,,在上为增函数,
当时,,在上为减函数,
所以时,,从而,所以在和上都是增函数.
由(II)知,时,数列单调递增,
取,因为,所以.
取,因为,所以.
所以,即弦的斜率随单调递增.
解法二:设函数,同解法一得,在和上都是增函数,
所以,.
故,即弦的斜率随单调递增.