网址:http://www.1010jiajiao.com/paper/timu/5154678.html[举报]
7.已知正三棱柱的侧棱长与底面边长相等,则与侧面所成角的正弦值等于( )
A. B. C. D.
理科数学试题(必修+选修Ⅱ)参考答案
评分说明:
1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.
2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数.
4. 只给整数分数.选择题和填空题不给中间分.
一、选择题
1.D 2.C 3.C 4.D 5.A 6.C
7.A 8.A 9.C 10.B 11.B 12.B
二、填空题
13. 14. 15. 16.
三、解答题
17.解:(1)的内角和,由得.
应用正弦定理,知
,
.
因为,
所以,
(2)因为
,
所以,当,即时,取得最大值.
18.解:(1)记表示事件“取出的2件产品中无二等品”,
表示事件“取出的2件产品中恰有1件二等品”.
则互斥,且,故
于是.
解得(舍去).
(2)的可能取值为.
若该批产品共100件,由(1)知其二等品有件,故
.
.
.
所以的分布列为
|
0 |
1 |
2 |
|
|
|
|
19.解法一:
(1)作交于点,则为的中点.
连结,又,
故为平行四边形.
,又平面平面.
所以平面.
(2)不妨设,则为等
腰直角三角形.
取中点,连结,则.
又平面,所以,而,
所以面.
取中点,连结,则.
连结,则.
故为二面角的平面角
.
所以二面角的大小为.
解法二:(1)如图,建立空间直角坐标系.
设,则
,
.
取的中点,则.
平面平面,
所以平面.
(2)不妨设,则.
中点
又,,
所以向量和的夹角等于二面角的平面角.
.
所以二面角的大小为.
20.解:(1)依题设,圆的半径等于原点到直线的距离,
即 .
得圆的方程为.
(2)不妨设.由即得
.
设,由成等比数列,得
,
即 .
由于点在圆内,故
由此得.
所以的取值范围为.
21.解:(1)由
整理得 .
又,所以是首项为,公比为的等比数列,得
(2)方法一:
由(1)可知,故.
那么,
又由(1)知且,故,
因此 为正整数.
方法二:
由(1)可知,
因为,
所以 .
由可得,
即
两边开平方得 .
即 为正整数.
22.解:(1)求函数的导数;.
曲线在点处的切线方程为:
,
即 .
(2)如果有一条切线过点,则存在,使
.
于是,若过点可作曲线的三条切线,则方程
有三个相异的实数根.
记 ,
则
.
当变化时,变化情况如下表:
|
|
0 |
|
|
|
|
|
0 |
|
0 |
|
|
极大值 |
|
极小值 |
|
由的单调性,当极大值或极小值时,方程最多有一个实数根;
当时,解方程得,即方程只有两个相异的实数根;
当时,解方程得,即方程只有两个相异的实数根.
综上,如果过可作曲线三条切线,即有三个相异的实数根,则
即 .