网址:http://www.1010jiajiao.com/paper/timu/5155615.html[举报]
15.(本小题满分12分)
已知:,,xR.
求的最大值,并求使取得最大值时和的夹角.
数学试题参考答案和评分标准(文科1)
一、选择题(每题5分,共40分)
序号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
答案 |
C |
D |
D |
A |
C |
B |
A |
B |
C |
D |
二、填空题(每题5分,共30分)
11.<< 12. 13.
14.(或为正整数)注:填以及是否注明字母的取值符号和关系,均不扣分.
三、解答题(满分80分,解答应写出文字说明和演算步骤).
15. 解:∵, ……………………………………………4分
∴当即时, ……………………………………………6分
取得最大值2. ……………………………………………………………………………………………8分
此时,,故,………………………………………11分
∴和的夹角是0. …………………………………………………………………………………………12分
注:也可以由和同向来说明.
16.解:(1) 证明:连结AF,
∵在矩形ABCD中,,F是线段BC的中点,
∴AF⊥FD. …………………………………………………………………3分
又∵PA⊥面ABCD,∴PA⊥FD. …………………………………4分
∴平面PAF⊥FD. …………………………………………………………5分
∴PF⊥FD. …………………………………………………………………6分
(2) 过E作EH∥FD交AD于H,则EH∥平面PFD且. …………9分
再过H作HG∥DP交PA于G,则HG∥平面PFD且. ……………11分
∴平面EHG∥平面PFD.
∴EG∥平面PFD. ……………………………………………………………………………………………13分
从而满足的点G为所找. ………………………………………………………………14分
注:1. 也可以延长DF、AB交于R,然后找EG∥PR进行处理)
2. 本题也可用向量法解.
17.解:将圆C的方程配方得标准方程为,则此圆的圆心为(0 , 4),半径为2.
(1) 若直线与圆C相切,则有. ………………………………………………3分
解得. ……………………………………………………………………………………………………5分
(2) 解法一:过圆心C作CD⊥AB,则根据题意和圆的性质,得
……………………………………………………………………………8分
解得. ………………………………………………………………………………………………10分
(解法二:联立方程并消去,得
.
设此方程的两根分别为、,则用即可求出a.)
∴直线的方程是和. ………………………………………12分
18.解:(1)由,令,则,又,所以.
由,得.
由,得. ……………………………………………………………………3分
(2)方法一:当时,由,可得.
即. …………………………………………………………………………………………………………………………5分
所以是以为首项,为公比的等比数列,于是. ……………6分
方法二:由(1)归纳可得,,它适合.
所以. ……………………………………………………………………………………………………………5分
注:方法二扣1分.
(3)数列为等差数列,公差,可得. ……………8分
从而,………………………………………………9分
∴ ……………10分
∴. …………………11分
∴. ……………………………………………………………14分
19.解:(1) 由表中可以看出,所选出的8位同学中,数学和物理分数均为优秀的人数是3人,其概率是. ………………………………………………………………………………………………………3分
(2) 变量y与x、z与x的相关系数分别是
、. ……………………………………………5分
可以看出,物理与数学、化学与数学的成绩都是高度正相关. …………………………6分
(3) 设y与x、z与x的线性回归方程分别是、.
根据所给的数据,可以计算出,
. ……………………………………………………10分
所以y与x和z与x的回归方程分别是
、. …………………………………………………………11分
又y与x、z与x的相关指数是、. ……13分
故回归模型比回归模型的拟合的效果好. …14分
20.解:(1) 易知,函数的定义域为. ……………………………………………1分
当时,. ……………………………………………2分
当x变化时,和的值的变化情况如下表: ……………………………………4分
x |
(0,1) |
1 |
(1,+∞) |
|
- |
0 |
+ |
|
递减 |
极小值 |
递增 |
由上表可知,函数的单调递减区间是(0,1)、单调递增区间是(1,+∞)、极小值是. ……………………………………………………………………………………………………………7分
(2) 由,得. ………………………………8分
又函数为上单调函数,
① 若函数为上的单调增函数,则在上恒成立,即不等式在上恒成立.也即在上恒成立. ………11分
又在上为减函数,. ……………………12分
所以.
② 若函数为上的单调减函数,则在上恒成立,这是不可能的. ……………………………………………………………………………………………………………………13分
综上,的取值范围为. ………………………………………………………………………14分