网址:http://www.1010jiajiao.com/paper/timu/5156230.html[举报]
18.(本小题满分12分)
甲、乙两名跳高运动员一次试跳米高度成功的概率分别是,,且每次试跳成功与否相互之间没有影响,求:
(Ⅰ)甲试跳三次,第三次才成功的概率;
(Ⅱ)甲、乙两人在第一次试跳中至少有一人成功的概率;
(Ⅲ)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.
参考答案
一、选择题:本大题考查基本概念和基本运算,每小题5分,满分60分.
1.C 2.C 3.D 4.A 5.A 6.B
7.D 8.B 9.D 10.B 11.B 12.C
二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分.
13. 14. 15.
16.答案不唯一,如“图形的全等”、“图形的相似”、“非零向量的共线”、“命题的充要条件”等等.
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
17.本小题主要考查两角和差公式,用同角三角函数关系等解斜三角形的基本知识以及推理和运算能力.满分12分.
解:(Ⅰ),
.
又,.
(Ⅱ)由且,
得.,.
18.本小题主要考查概率的基础知识,运用数学知识解决问题的能力,以及推理与运算能力.满分12分.
解:记“甲第次试跳成功”为事件,“乙第次试跳成功”为事件,依题意得,,且,()相互独立.
(Ⅰ)“甲第三次试跳才成功”为事件,且三次试跳相互独立,
.
答:甲第三次试跳才成功的概率为.
(Ⅱ)“甲、乙两人在第一次试跳中至少有一人成功”为事件.
解法一:,且,,彼此互斥,
.
解法二:.
答:甲、乙两人在第一次试跳中至少有一人成功的概率为.
(Ⅲ)设“甲在两次试跳中成功次”为事件,
“乙在两次试跳中成功次”为事件,
事件“甲、乙各试跳两次,甲比乙的成功次数恰好多一次”可表示为,且,为互斥事件,
所求的概率为
答:甲、乙每人试跳两次,甲比乙的成功次数恰好多一次的概率为.
19.本小题主要考查直线与平面的位置关系,二面角的大小等知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分.
解法一:(Ⅰ)取中点,连结.
为正三角形,.
正三棱柱中,平面平面,平面.
连结,在正方形中,分别为
的中点,
,
.
在正方形中,,
平面.
(Ⅱ)设与交于点,在平面中,
作于,连结,由(Ⅰ)得平面.
,
为二面角的平面角.
在中,由等面积法可求得,
又,
.
所以二面角的大小为.
解法二:(Ⅰ)取中点,连结.
为正三角形,.
在正三棱柱中,
平面平面,
平面.
取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,,
,,.
,,
,.
平面.
(Ⅱ)设平面的法向量为.
,.
,,
令得为平面的一个法向量.
由(Ⅰ)知平面,
为平面的法向量.
,.
二面角的大小为.
20.本题主要考查函数的单调性、极值以及函数导数的应用,考查运用数学知识分析问题解决问题的能力.满分12分.
解:(Ⅰ),
当时,取最小值,
即.
(Ⅱ)令,
由得,(不合题意,舍去).
当变化时,的变化情况如下表:
|
|
|
|
|
|
|
|
|
递增 |
极大值 |
递减 |
在内有最大值.
在内恒成立等价于在内恒成立,
即等价于,
所以的取值范围为.
21.本小题考查数列的基本知识,考查等比数列的概念、通项公式及数列的求和,考查分类讨论及化归的数学思想方法,以及推理和运算能力.满分12分.
解:(Ⅰ),
,
.
又,
数列是首项为,公比为的等比数列,.
当时,,
(Ⅱ),
当时,;
当时,,…………①
,………………………②
得:
.
.
又也满足上式,
.
22.本小题主要考查直线、抛物线、向量等基础知识,考查轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力.满分14分.
解法一:(Ⅰ)设点,则,由得:
,化简得.
(Ⅱ)(1)设直线的方程为:
.
设,,又,
联立方程组,消去得:,,
由,得:
,,整理得:
,,
.
解法二:(Ⅰ)由得:,
,
,
.
所以点的轨迹是抛物线,由题意,轨迹的方程为:.
(Ⅱ)(1)由已知,,得.
则:.…………①
过点分别作准线的垂线,垂足分别为,,
则有:.…………②
由①②得:,即.
(Ⅱ)(2)解:由解法一,
.
当且仅当,即时等号成立,所以最小值为.