网址:http://www.1010jiajiao.com/paper/timu/5156746.html[举报]
22.本小题主要考查椭圆的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.
(Ⅰ)证法一:由题设及,,不妨设点,其中.由于点在椭圆上,有,即.
解得,从而得到.
直线的方程为,整理得.
由题设,原点到直线的距离为,即,
将代入上式并化简得,即.
证法二:同证法一,得到点的坐标为.
过点作,垂足为,易知,故.
由椭圆定义得,又,
所以,
解得,而,得,即.
(Ⅱ)解法一:设点的坐标为.
当时,由知,直线的斜率为,所以直线的方程为,或,其中,.
点的坐标满足方程组
将①式代入②式,得,
整理得,
于是,.
由①式得
.
由知.将③式和④式代入得,
.
将代入上式,整理得.
当时,直线的方程为,的坐标满足方程组
所以,.
由知,即,
解得.
这时,点的坐标仍满足.
综上,点的轨迹方程为 .
解法二:设点的坐标为,直线的方程为,由,垂足为,可知直线的方程为.
记(显然),点的坐标满足方程组
由①式得. ③
由②式得. ④
将③式代入④式得.
整理得,
于是. ⑤
由①式得. ⑥
由②式得. ⑦
将⑥式代入⑦式得,
整理得,
于是. ⑧
由知.将⑤式和⑧式代入得,
.
将代入上式,得.
所以,点的轨迹方程为.
四川文
(5)如果双曲线=1上一点P到双曲线右焦点的距离是2,那么点P到y轴的距离是
(A) (B) (C) (D)
(10)已知抛物线y-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于
A.3 B.4 C.3 D.4
解析:选C.设直线的方程为,由,进而可求出的中点,又由在直线上可求出,∴,由弦长公式可求出.本题考查直线与圆锥曲线的位置关系.自本题起运算量增大.
(21)(本小题满分12分)
求F1、F2分别是椭圆的左、右焦点.
(Ⅰ)若r是第一象限内该数轴上的一点,,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于同的两点A、B,且∠ADB为锐角(其中O为作标原点),求直线的斜率的取值范围.
解析:本题主要考查直线、椭圆、平面向量的数量积等基础知识,以及综合运用数学知识解决问题及推理计算能力.
(Ⅰ)易知,,.
∴,.设.则
,又,
联立,解得,.
(Ⅱ)显然不满足题设条件.可设的方程为,设,.
联立
∴,
由
,,得.①
又为锐角,
∴
又
∴
∴.②
综①②可知,∴的取值范围是.
四川理
20)(本小题满分12分)设、分别是椭圆的左、右焦点.
(Ⅰ)若是该椭圆上的一个动点,求.的最大值和最小值;
(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.
(20)本题主要考察直线、椭圆、平面向量的数量积等基础知识,以及综合应用数学知识解决问题及推理计算能力。
解:(Ⅰ)解法一:易知
所以,设,则
因为,故当,即点为椭圆短轴端点时,有最小值
当,即点为椭圆长轴端点时,有最大值
解法二:易知,所以,设,则
(以下同解法一)
(Ⅱ)显然直线不满足题设条件,可设直线,
联立,消去,整理得:
∴
由得:或
又
∴
又
∵,即 ∴
故由①、②得或
上海理