网址:http://www.1010jiajiao.com/paper/timu/5157193.html[举报]
20.(本小题满分12分)
已知函数,其中.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的单调区间与极值.
数学(理工类)参考解答
一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分.
1.C 2.B 3.A 4.D 5.C
6.D 7.B 8.B 9.A 10.A
二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分.
11.2 12. 13.3
14. 15. 16.390
三、解答题
17.本小题考查三角函数中的诱导公式、特殊角三角函数值、两角差公式、倍角公式、函数的性质等基础知识,考查基本运算能力.满分12分.
(Ⅰ)解:.
因此,函数的最小正周期为.
(Ⅱ)解法一:因为在区间上为增函数,在区间上为减函数,又,,,
故函数在区间上的最大值为,最小值为.
解法二:作函数在长度为一个周期的区间上的图象如下:
由图象得函数在区间上的最大值为,最小值为.
18.本小题主要考查互斥事件、相互独立事件、离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分.
(Ⅰ)解:设“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件.由于事件相互独立,且,.
故取出的4个球均为黑球的概率为.
(Ⅱ)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件.由于事件互斥,
且,.
故取出的4个球中恰有1个红球的概率为.
(Ⅲ)解:可能的取值为.由(Ⅰ),(Ⅱ)得,,
.从而.
的分布列为
|
0 |
1 |
2 |
3 |
|
|
|
|
|
的数学期望.
19.本小题考查直线与直线垂直、直线与平面垂直、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.满分12分.
(Ⅰ)证明:在四棱锥中,因底面,平面,故.
,平面.
而平面,.
(Ⅱ)证明:由,,可得.
是的中点,.
由(Ⅰ)知,,且,所以平面.
而平面,.
底面在底面内的射影是,,.
又,综上得平面.
(Ⅲ)解法一:过点作,垂足为,连结.则(Ⅱ)知,平面,在平面内的射影是,则.
因此是二面角的平面角.
由已知,得.设,
可得.
在中,,,
则.
在中,.
所以二面角的大小是.
解法二:由题设底面,平面,则平面平面,交线为.
过点作,垂足为,故平面.过点作,垂足为,连结,故.因此是二面角的平面角.
由已知,可得,设,
可得.
,.
于是,.
在中,.
所以二面角的大小是.
20.本小题考查导数的几何意义,两个函数的和、差、积、商的导数,利用导数研究函数的单调性和极值等基础知识,考查运算能力及分类讨论的思想方法.满分12分.
(Ⅰ)解:当时,,,
又,.
所以,曲线在点处的切线方程为,
即.
(Ⅱ)解:.
由于,以下分两种情况讨论.
(1)当时,令,得到,.当变化时,的变化情况如下表:
|
|
|
|
|
|
|
|
0 |
|
0 |
|
|
|
极小值 |
|
极大值 |
|
所以在区间,内为减函数,在区间内为增函数.
函数在处取得极小值,且,
函数在处取得极大值,且.
(2)当时,令,得到,当变化时,的变化情况如下表:
|
|
|
|
|
|
|
|
0 |
|
0 |
|
|
|
极大值 |
|
极小值 |
|
所以在区间,内为增函数,在区间内为减函数.
函数在处取得极大值,且.
函数在处取得极小值,且.
21.本小题以数列的递推关系式为载体,主要考查等比数列的前项和公式、数列求和、不等式的证明等基础知识与基本方法,考查归纳、推理、运算及灵活运用数学知识分析问题和解决问题的能力.满分14分.
(Ⅰ)解法一:,
,
.
由此可猜想出数列的通项公式为.
以下用数学归纳法证明.
(1)当时,,等式成立.
(2)假设当时等式成立,即,
那么
.
这就是说,当时等式也成立.根据(1)和(2)可知,等式对任何都成立.
解法二:由,,
可得,
所以为等差数列,其公差为1,首项为0,故,所以数列的通项公式为.
(Ⅱ)解:设, ①
②
当时,①式减去②式,
得,
.
这时数列的前项和.
当时,.这时数列的前项和.
(Ⅲ)证明:通过分析,推测数列的第一项最大,下面证明:
. ③
由知,要使③式成立,只要,
因为
.
所以③式成立.
因此,存在,使得对任意均成立.
22.本小题主要考查椭圆的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.
(Ⅰ)证法一:由题设及,,不妨设点,其中.由于点在椭圆上,有,即.
解得,从而得到.
直线的方程为,整理得.
由题设,原点到直线的距离为,即,
将代入上式并化简得,即.
证法二:同证法一,得到点的坐标为.
过点作,垂足为,易知,故.
由椭圆定义得,又,
所以,
解得,而,得,即.
(Ⅱ)解法一:设点的坐标为.
当时,由知,直线的斜率为,所以直线的方程为,或,其中,.
点的坐标满足方程组
将①式代入②式,得,
整理得,
于是,.
由①式得
.
由知.将③式和④式代入得,
.
将代入上式,整理得.
当时,直线的方程为,的坐标满足方程组
所以,.
由知,即,
解得.
这时,点的坐标仍满足.
综上,点的轨迹方程为 .
解法二:设点的坐标为,直线的方程为,由,垂足为,可知直线的方程为.
记(显然),点的坐标满足方程组
由①式得. ③
由②式得. ④
将③式代入④式得.
整理得,
于是. ⑤
由①式得. ⑥
由②式得. ⑦
将⑥式代入⑦式得,
整理得,
于是. ⑧
由知.将⑤式和⑧式代入得,
.
将代入上式,得.
所以,点的轨迹方程为.