网址:http://www.1010jiajiao.com/paper/timu/5157845.html[举报]
5.若,则下列命题中正确的是( D )
A. B.
C. D.
(江西文8)
若,则下列命题正确的是( B )
A. B. C. D.
(辽宁理12)
已知与是定义在上的连续函数,如果与仅当时的函数值为0,且,那么下列情形不可能出现的是( )
A.0是的极大值,也是的极大值
B.0是的极小值,也是的极小值
C.0是的极大值,但不是的极值
D.0是的极小值,但不是的极值
(全国一文11)
曲线在点处的切线与坐标轴围成的三角形面积为( A )
A. B. C. D.
(全国二文8)
已知曲线的一条切线的斜率为,则切点的横坐标为( A )
A.1 B.2 C.3 D.4
(浙江理8)
设是函数的导函数,将和的图象画在同一个直角坐标系中,不可能正确的是( D )
(北京文9)
是的导函数,则的值是____.3
(广东文12)
函数的单调递增区间是____.
(江苏13)
已知函数在区间上的最大值与最小值分别为,则__.32
(湖北文13)
已知函数的图象在点处的切线方程是,则____.3
(湖南理13)
函数在区间上的最小值是____.
(浙江文15)
曲线在点处的切线方程是____.
(安徽理 18)
设a≥0,f (x)=x-1-ln2 x+2a ln x(x>0).
(Ⅰ)令F(x)=xf'(x),讨论F(x)在(0.+∞)内的单调性并求极值;
(Ⅱ)求证:当x>1时,恒有x>ln2x-2a ln x+1.
本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合运用有关知识解决问题的能力.本小题满分14分.
(Ⅰ)解:根据求导法则有,
故,
于是,
列表如下:
|
|
2 |
|
|
|
0 |
|
|
|
极小值 |
|
故知在内是减函数,在内是增函数,所以,在处取得极小值.
(Ⅱ)证明:由知,的极小值.
于是由上表知,对一切,恒有.
从而当时,恒有,故在内单调增加.
所以当时,,即.
故当时,恒有.
(安徽文 20)
设函数f(x)=-cos2x-4tsincos+4t2+t2-3t+4,x∈R,其中≤1,将f(x)的最小值记为g(t).
(Ⅰ)求g(t)的表达式;
(Ⅱ)诗论g(t)在区间(-1,1)内的单调性并求极值.
本小题主要考查同角三角函数的基本关系,倍角的正弦公式,正弦函数的值域,多项式函数的导数,函数的单调性,考查应用导数分析解决多项式函数的单调区间,极值与最值等问题的综合能力.
解:(I)我们有
.
由于,,故当时,达到其最小值,即
.
(II)我们有.
列表如下:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
极大值 |
|
极小值 |
|
由此可见,在区间和单调增加,在区间单调减小,极小值为,极大值为.
(北京理 19)
如图,有一块半椭圆形钢板,其半轴长为,短半轴长为,计划将此钢板切割成等腰梯形的形状,下底是半椭圆的短轴,上底的端点在椭圆上,记,梯形面积为.
(I)求面积以为自变量的函数式,并写出其定义域;
(II)求面积的最大值.
解:(I)依题意,以的中点为原点建立直角坐标系(如图),则点的横坐标为.
点的纵坐标满足方程,
解得
,
其定义域为.
(II)记,
则.
令,得.
因为当时,;当时,,所以是的最大值.
因此,当时,也取得最大值,最大值为.
即梯形面积的最大值为.
(福建理 22)
已知函数
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若,且对于任意,恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:.
本小题主要考查函数的单调性、极值、导数、不等式等基本知识,考查运用导数研究函数性质的方法,考查分类讨论、化归以及数形结合等数学思想方法,考查分析问题、解决问题的能力.满分14分.
解:(Ⅰ)由得,所以.
由得,故的单调递增区间是,
由得,故的单调递减区间是.
(Ⅱ)由可知是偶函数.
于是对任意成立等价于对任意成立.
由得.
①当时,.
此时在上单调递增.
故,符合题意.
②当时,.
当变化时的变化情况如下表:
|
|
|
|
|
|
|
|
|
单调递减 |
极小值 |
单调递增 |
由此可得,在上,.
依题意,,又.
综合①,②得,实数的取值范围是.
(Ⅲ),
,
,
由此得,
故.
(福建文 20)
设函数.
(Ⅰ)求的最小值;
(Ⅱ)若对恒成立,求实数的取值范围.
本题主要考查函数的单调性、极值以及函数导数的应用,考查运用数学知识分析问题解决问题的能力.满分12分.
解:(Ⅰ),
当时,取最小值,
即.
(Ⅱ)令,
由得,(不合题意,舍去).
当变化时,的变化情况如下表:
|
|
|
|
|
|
|
|
|
递增 |
极大值 |
递减 |
在内有最大值.
在内恒成立等价于在内恒成立,
即等价于,
所以的取值范围为.
(广东理、文 20)
已知是实数,函数.如果函数在区间上有
零点,求的取值范围.
解: 若 , ,显然在上没有零点, 所以
令 得
当 时, 恰有一个零点在上;
当 即 时, 也恰有一个零点在上;
当 在上有两个零点时, 则
或
解得或
因此的取值范围是 或 ;
(海南理 21)
设函数
(I)若当时,取得极值,求的值,并讨论的单调性;
(II)若存在极值,求的取值范围,并证明所有极值之和大于.
解:(Ⅰ),
依题意有,故.
从而.
的定义域为,当时,;
当时,;
当时,.
从而,分别在区间单调增加,在区间单调减少.
(Ⅱ)的定义域为,.
方程的判别式.
(ⅰ)若,即,在的定义域内,故的极值.
(ⅱ)若,则或.
若,,.
当时,,当时,,所以无极值.
若,,,也无极值.
(ⅲ)若,即或,则有两个不同的实根,.
当时,,从而有的定义域内没有零点,故无极值.
当时,,,在的定义域内有两个不同的零点,由根值判别方法知在取得极值.
综上,存在极值时,的取值范围为.
的极值之和为
.
(海南文 19)
设函数
(Ⅰ)讨论的单调性;
(Ⅱ)求在区间的最大值和最小值.
解:的定义域为.
(Ⅰ).
当时,;当时,;当时,.
从而,分别在区间,单调增加,在区间单调减少.
(Ⅱ)由(Ⅰ)知在区间的最小值为.
又.
所以在区间的最大值为.
(湖北理 20)
已知定义在正实数集上的函数,,其中.设两曲线,有公共点,且在该点处的切线相同.
(I)用表示,并求的最大值;
(II)求证:().
本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.
解:(Ⅰ)设与在公共点处的切线相同.
,,由题意,.
即由得:,或(舍去).
即有.
令,则.于是
当,即时,;
当,即时,.
故在为增函数,在为减函数,
于是在的最大值为.
(Ⅱ)设,
则.
故在为减函数,在为增函数,
于是函数在上的最小值是.
故当时,有,即当时,.
(湖北文 19)
设二次函数,方程的两根和满足.
(I)求实数的取值范围;
(II)试比较与的大小.并说明理由.
本小题主要考查二次函数、二次方程的基本性质及二次不等式的解法,考查推理和运算能力.
解法1:(Ⅰ)令,
则由题意可得.
故所求实数的取值范围是.
(II),令.
当时,单调增加,当时,
,即.
解法2:(I)同解法1.
(II),由(I)知,
.又于是
,
即,故.
解法3:(I)方程,由韦达定理得
,,于是
.
故所求实数的取值范围是.
(II)依题意可设,则由,得
,故.
(湖南理 19)
如图4,某地为了开发旅游资源,欲修建一条连接风景点和居民区的公路,点所在的山坡面与山脚所在水平面所成的二面角为(),且,点到平面的距离(km).沿山脚原有一段笔直的公路可供利用.从点到山脚修路的造价为万元/km,原有公路改建费用为万元/km.当山坡上公路长度为km()时,其造价为万元.已知,,,.
(I)在上求一点,使沿折线修建公路的总造价最小;
(II) 对于(I)中得到的点,在上求一点,使沿折线修建公路的总造价最小.
(III)在上是否存在两个不同的点,,使沿折线修建公路的总造价小于(II)中得到的最小总造价,证明你的结论.
解:(I)如图,,,,
由三垂线定理逆定理知,,所以是
山坡与所成二面角的平面角,则,
.
设,.则
.
记总造价为万元,
据题设有
当,即时,总造价最小.
(II)设,,总造价为万元,根据题设有
.
则,由,得.
当时,,在内是减函数;
当时,,在内是增函数.
故当,即(km)时总造价最小,且最小总造价为万元.
(III)解法一:不存在这样的点,.
事实上,在上任取不同的两点,.为使总造价最小,显然不能位于 与之间.故可设位于与之间,且=,,,总造价为万元,则.类似于(I)、(II)讨论知,,,当且仅当,同时成立时,上述两个不等式等号同时成立,此时,,取得最小值,点分别与点重合,所以不存在这样的点 ,使沿折线修建公路的总造价小于(II)中得到的最小总造价.
解法二:同解法一得
.
当且仅当且,即同时成立时,取得最小值,以上同解法一.
(湖南文 21)
已知函数在区间,内各有一个极值点.
(I)求的最大值;
(II)当时,设函数在点处的切线为,若在点处穿过函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧),求函数的表达式.
解:(I)因为函数在区间,内分别有一个极值点,所以在,内分别有一个实根,
设两实根为(),则,且.于是
,,且当,即,时等号成立.故的最大值是16.
(II)解法一:由知在点处的切线的方程是
,即,
因为切线在点处空过的图象,
所以在两边附近的函数值异号,则
不是的极值点.
而,且
.
若,则和都是的极值点.
所以,即,又由,得,故.
解法二:同解法一得
.
因为切线在点处穿过的图象,所以在两边附近的函数值异号,于是存在().
当时,,当时,;
或当时,,当时,.
设,则
当时,,当时,;
或当时,,当时,.
由知是的一个极值点,则,
所以,又由,得,故.
(辽宁理 22)
已知函数,.
(I)证明:当时,在上是增函数;
(II)对于给定的闭区间,试说明存在实数 ,当时,在闭区间上是减函数;
(III)证明:.
(辽宁文 22)
已知函数,,且对任意的实数均有,.
(I)求函数的解析式;
(II)若对任意的,恒有,求的取值范围.
(全国一 理20)
设函数.
(Ⅰ)证明:的导数;
(Ⅱ)若对所有都有,求的取值范围.
解:(Ⅰ)的导数.
由于,故.
(当且仅当时,等号成立).
(Ⅱ)令,则
,
(ⅰ)若,当时,,
故在上为增函数,
所以,时,,即.
(ⅱ)若,方程的正根为,
此时,若,则,故在该区间为减函数.
所以,时,,即,与题设相矛盾.
综上,满足条件的的取值范围是.
(全国一文 20)
设函数在及时取得极值