网址:http://www.1010jiajiao.com/paper/timu/5159594.html[举报]
2.()函数f(x)=cos2x+sin(+x)是( )
A.非奇非偶函数 B.仅有最小值的奇函数
C.仅有最大值的偶函数 D.既有最大值又有最小值的偶函数
参考答案
难点磁场
证明:若x>0,则α+β>∵α、β为锐角,∴0<-α<β<;0<-β<,∴0<sin(-α)<sinβ.0<sin(-β)<sinα,∴0<cosα<sinβ,0<cosβ<sinα,∴0<<1,0<<1,∴f(x)在(0,+∞)上单调递减,∴f(x)<f(0)=2.若x<0,α+β<,∵α、β为锐角,0<β<-α<,0<α<-β<,0<sinβ<sin(-α),∴sinβ<cosα,0<sinα<sin(-β),∴sinα<cosβ,∴>1, >1,
∵f(x)在(-∞,0)上单调递增,∴f(x)<f(0)=2,∴结论成立.
歼灭难点训练
一、1.解析:函数y=-xcosx是奇函数,图象不可能是A和C,又当x∈(0, )时,
y<0.
答案:D
2.解析:f(x)=cos2x+sin(+x)=2cos2x-1+cosx
=2[(cosx+]-1.
答案:D
二、3.解:在[-π,π]上,y=|cosx|的单调递增区间是[-,0]及[,π].而f(x)依|cosx|取值的递增而递减,故[-,0]及[,π]为f(x)的递减区间.
4.解:由-≤ωx≤,得f(x)的递增区间为[-,],由题设得
三、5.解:(1)∵-1≤sinα≤1且f(sinα)≥0恒成立,∴f(1)≥0
∵1≤2+cosβ≤3,且f(2+cosβ)≤0恒成立.∴f(1)≤0.
从而知f(1)=0∴b+c+1=0.
(2)由f(2+cosβ)≤0,知f(3)≤0,∴9+3b+c≤0.又因为b+c=-1,∴c≥3.
(3)∵f(sinα)=sin2α+(-1-c)sinα+c=(sinα-)2+c-()2,
当sinα=-1时,[f(sinα)]max=8,由解得b=-4,c=3.
6.解:如图,设矩形木板的长边AB着地,并设OA=x,OB=y,则a2=x2+y2-2xycosα≥2xy-2xycosα=2xy(1-cosα).
∵0<α<π,∴1-cosα>0,∴xy≤ (当且仅当x=y时取“=”号),故此时谷仓的容积的最大值V1=(xysinα)b=.同理,若木板短边着地时,谷仓的容积V的最大值V2=ab2cos,
∵a>b,∴V1>V2
从而当木板的长边着地,并且谷仓的底面是以a为底边的等腰三角形时,谷仓的容积最大,其最大值为a2bcos.
7.解:如下图,扇形AOB的内接矩形是MNPQ,连OP,则OP=R,设∠AOP=θ,则
∠QOP=45°-θ,NP=Rsinθ,在△PQO中,,
∴PQ=Rsin(45°-θ).S矩形MNPQ=QP.NP=R2sinθsin(45°-θ)=R2.[cos(2θ-45°)-]≤R2,当且仅当cos(2θ-45°)=1,即θ=22.5°时,S矩形MNPQ的值最大且最大值为R2.
工人师傅是这样选点的,记扇形为AOB,以扇形一半径OA为一边,在扇形上作角AOP且使∠AOP=22.5°,P为边与扇形弧的交点,自P作PN⊥OA于N,PQ∥OA交OB于Q,并作OM⊥OA于M,则矩形MNPQ为面积最大的矩形,面积最大值为R2.
8.解:∵在[-]上,1+sinx>0和1-sinx>0恒成立,∴原函数可化为y=
log2(1-sin2x)=log2cos2x,又cosx>0在[-]上恒成立,∴原函数即是y=2log2cosx,在x∈[
-]上,≤cosx≤1.
∴log2≤log2cosx≤log21,即-1≤y≤0,也就是在x∈[-]上,ymax=0,
ymin=-1.
综合上述知,存在符合题设.