奉贤区2009年高考模拟考试数学试卷(理科卷)2009.03
(完卷时间:120分钟 满分:150分)
命题人员:陶慰树、张建权、姚志强
一、填空题:(共55分,每小题5分)
1、方程的解是 。
2、不等式的解集为 。
3、已知复数z=-i为纯虚数,则实数a= 。
4、在极坐标系中,是极点,设点,,则三角形OAB的面积为
5、若的二项展开式中含项的系数是80,则实数a的值为 .
6、在1,2,3,4,5这五个数字中任取不重复的3个数字组成一个三位数,则组成的三位数是奇数的概率是 。(用分数表示)
7、关于函数有下列命题:
①的定义域是;②是偶函数;③在定义域内是增函数;④的最大值是,最小值是。其中正确的命题是 。(写出你所认为正确的所有命题序号)
8、已知直角三角形的两直角边长分别为
9、已知各项均为正数的等比数列的首项,公比为,前n项和为,若,则公比为的取值范围是 。
10、设实数满足,若对满足条件,不等式恒成立,则的取值范围是 。
11、现有31行67列表格一个,每个小格都只填1个数,从左上角开始,第一行依次为1,2,…67;第二行依次为68,69…134;…依次把表格填满。现将此表格的数按另一方式填写,从左上角开始,第一列从上到下依次为1,2…,31;第二列从上到下依次为32,33,…,62;…依次把表格填满。对于上述两种填法,在同一小格里两次填写的数相同,这样的小格在表格中共有_________个。
二、选择题:(共20分,每小题5分)
12、条件p:不等式的解;条件q:不等式的解。则p是q的????????????????????????( )
A、充分非必要条件; B、必要非充分条件;
C、充要条件; D、非充分非必要条件。
13、如图给出了一个算法流程图,该算法流程图的功能是( )
A、求三个数中最大的数
B、求三个数中最小的数
C、按从小到大排列
D、按从大到小排列
14、在正方体中,点E在A
(A),(B),
(C),(D).
15、设函数的定义域为D,如果对于任意D,存在唯一的D使=c(c为常数)成立,则称函数在D上“与常数c关联”。
现有函数:①;②;③;④,其中满足在其定义域上“与常数4关联”的所有函数是 -----( )
(A) ①② (B) ③④ (C) ①③④ (D) ①③
三、简答题(75分)
16、(本题12分,第(1)小题6分,第(2)小题6分)
在直三棱柱ABC-A1B
(1)求异面直线B
(2)若直线A
求三棱锥A1-ABC的体积.
17、(本题14分,第(1)小题6分,第(2)小题8分)
已知函数
(1)将写成的形式,并求其图象对称中心的横坐标;
(2)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为,试求角的范围及此时函数的值域.
18、(本题14分,第(1)小题5分,第(2)小题9分)
某商场在促销期间规定:商场内所有商品按标价的80ㄇ出售;同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:
消费金额(元)的范围
[200,400)
[400,500)
[500,700)
[700,900)
…
获得奖券的金额(元)
30
60
100
130
…
根据上述促销方法,顾客在该商场购物可以获得双重优惠。例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×0.2+30=110(元)。设购买商品的优惠率= 。
试问:
(1) 购买一件标价为1000的商品,顾客得到的优惠率是多少?
(2) 对于标价在[500,800)(元)内的商品,顾客购买标价为多少元的商品,可得到不小于的优惠率?
19、(本题16分,第(1)小题4分,第(2)小题7分,第(3)小题5分)
已知点集,其中,,点列在L中,为L与y轴的交点,等差数列的公差为1,。
(1)求数列的通项公式;
(2)若=,令;试用解析式写出关于的函数。
(3)若=,给定常数m(),是否存在,使得 ,若存在,求出的值;若不存在,请说明理由。
20、(本题19分,第(1)小题4分,第(2)小题6分,第(3)小题9分)
已知:点P与点F(2,0)的距离比它到直线+4=0的距离小2,若记点P的轨迹为曲线C。
(1)求曲线C的方程。
(2)若直线L与曲线C相交于A、B两点,且OA⊥OB。求证:直线L过定点,并求出该定点的坐标。
(3)试利用所学圆锥曲线知识参照(2)设计一个与直线过定点有关的数学问题,并解答所提问题。
(本小题将根据你所设计问题的不同思维层次予以不同评分)
一、填空题 (每题5分)
1) 2) 3)0 4) 5) 6) 7)②④ 8) 9) 10) 11)7
二、选择题(每题5分)
12、A 13、B 14、D 15、D
三、解答题
16、16、
(1)因为,所以∠BCA(或其补角)即为异面直线与所成角 -------(3分)
∠ABC=90°, AB=BC=1,所以, -------(2分)
即异面直线与所成角大小为。 -------(1分)
(2)直三棱柱ABC-A1B
中,AB=BC=1得到,中,得到, -------(2分)
所以 -------(2分)
17、 -------(1分)
= -------(1分)
= -------(1分)
若为其图象对称中心的横坐标,即=0, -------(1分)
, -------(1分)
解得: -------(1分)
(2), -------(2分)
即,而,所以。 -------(2分)
,, -------(2分)
所以 ------(2分)
18、,顾客得到的优惠率是。 -------(5分)
(2)、设商品的标价为x元,则500≤x≤800 ----- -(2分)
消费金额: 400≤0.8x≤640
由题意可得:
(1)≥ 无解 ------(3分)
或(2) ≥ 得:625≤x≤750 ------(3分)
因此,当顾客购买标价在元内的商品时,可得到不小于的优惠率。------(1分)
19、(1)y=? =(2x-b)+(b+1)=2x+1 -----(1分)
与轴的交点为,所以; -----(1分)
所以,即, -----(1分)
因为在上,所以,即 -----(1分)
(2)设 (),
即 () ----(1分)
(A)当时,
----(1分)
==,而,所以 ----(1分)
(B)当时, ----(1分)
= =, ----(1分)
而,所以 ----(1分)
因此() ----(1分)
(3)假设,使得 ,
(A)为奇数
(一)为奇数,则为偶数。则,。则,解得:与矛盾。 ----(1分)
(二)为偶数,则为奇数。则,。则,解得:(是正偶数)。 ----(1分)
(B)为偶数
(一)为奇数,则为奇数。则,。则,解得:(是正奇数)。 ----(1分)
(二)为偶数,则为偶数。则,。则,解得:与矛盾。 ----(1分)
由此得:对于给定常数m(),这样的总存在;当是奇数时,;当是偶数时,。 ----(1分)
20、(1)解法(A):点P与点F(2,0)的距离比它到直线+4=0的距离小2,所以点P与点F(2,0)的距离与它到直线+2=0的距离相等。 ----(1分)
由抛物线定义得:点在以为焦点直线+2=0为准线的抛物线上, ----(1分)
抛物线方程为。 ----(2分)
解法(B):设动点,则。当时,,化简得:,显然,而,此时曲线不存在。当时,,化简得:。
(2),
,
, ----(1分)
,
,即,, ----(2分)
直线为,所以 ----(1分)
----(1分)
由(a)(b)得:直线恒过定点。 ----(1分)
1、(逆命题)如果直线,且与抛物线相交于A、B两点,O为坐标原点。求证:OA⊥OB (评分:提出问题得1分,解答正确得1分)
(若,求证:?=0,得分相同)
2、(简单推广命题)如果直线L与抛物线=2px(p>0)相交于A、B两点,且OA⊥OB。求证:直线L过定点(2p,0)
或:它的逆命题(评分:提出问题得2分,解答正确得1分)
3、(类比)
3.1(1)如果直线L与椭圆+=1(a>b>0)相交于A、B两点,M是其右顶点,当MA⊥MB。求证:直线L过定点(,0)
3.1(2)如果直线L与椭圆+=1(a>b>0)相交于A、B两点,M是其左顶点,当MA⊥MB。求证:直线L过定点(,0)
3.1(3)或它的逆命题
3.2(1)如果直线L与双曲线-=1(a>0,b>0)相交于A、B两点,M是其右顶点,当MA⊥MB。求证:直线L过定点(,0)(a≠b)
3.2(2)如果直线L与双曲线-=1(a>0,b>0)相交于A、B两点,M是其左顶点,当MA⊥MB。求证:直线L过定点(,0)(a≠b)
3.2(3)或它的逆命题
(评分:提出问题得3分,解答正确得3分)
4、(再推广)
直角顶点在圆锥曲线上运动
如:如果直线L与抛物线=2px(p>0)相交于A、B两点,P是抛物线上一定点(,),且PA⊥PB。求证:直线L过定点(+2p,-)
(评分:提出问题得4分,解答正确得3分)
5、(再推广)
如果直线L与抛物线=2px(p>0)相交于A、B两点,P是抛物线上一定点(,),PA与PB的斜率乘积是常数m。求证:直线L过定点(-,-)
(评分:提出问题得5分,解答正确得4分)
或?为常数
顶点在圆锥曲线上运动并把直角改为一般定角或OA与OB的斜率乘积是常数或?为常数
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com