第十四讲 不等式的应用
★★★高考在考什么
【考题回放】
1.(北京) 若不等式组表示的平面区域是一个三角形,则的取值范围是( D )
A. B. C. D.或
2.(福建) 已知为R上的减函数,则满足的实数的取值范围是(C)
A.(-1,1) B.(0,1)
C.(-1,0)(0,1) D.(-,-1)(1,+)
3.(陕西)已知不等式对任意正实数恒成立,则正实数的最小值为 (B)
(A)8 (B)6 (C)4 (D)2
4.(重庆)若动点()在曲线上变化,则的最大值为( A )
A. B.
C. D.2
5.(重庆)一元二次方程有一个正根和一个负根的充分不必要条件是 ( C )
A. B. C. D.
6、(浙江卷)已知则不等式≤5的解集是 .
★★★高考要考什么
不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工具,与其他知识综合运用的特点比较突出.不等式的应用大致可分为两类:一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题、本难点提供相关的思想方法,使考生能够运用不等式的性质、定理和方法解决函数、方程、实际应用等方面的问题.
★ ★★ 突 破 重 难 点
【范例1】已知函数的图象与轴分别相交于点A、B,(分别是与轴正半轴同方向的单位向量),函数。
(1)求的值;
(2)当满足时,求函数的最小值。
解:(1)由已知得
于是
(2)由
即
由于,其中等号当且仅当x+2=1,即x=-1时成立,
∴时的最小值是-3.
【范例2】已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x)|≤1.
(1)证明:|c|≤1;
(2)证明:当-1 ≤x≤1时,|g(x)|≤2;
(3)设a>0,有-1≤x≤1时, g(x)的最大值为2,求f(x).
命题意图:本题主要考查二次函数的性质、含有绝对值不等式的性质,以及综合应用数学知识分析问题和解决问题的能力.属较难题目.
知识依托:二次函数的有关性质、函数的单调性是药引,而绝对值不等式的性质灵活运用是本题的灵魂.
错解分析:本题综合性较强,其解答的关键是对函数f(x)的单调性的深刻理解,以及对条件“-1≤x≤1时|f(x)|≤1”的运用;绝对值不等式的性质使用不当,会使解题过程空洞,缺乏严密,从而使题目陷于僵局.
技巧与方法:本题(2)问有三种证法,证法一利用g(x)的单调性;证法二利用绝对值不等式:||a|-|b||≤|a±b|≤|a|+|b|;而证法三则是整体处理g(x)与f(x)的关系.
(1)证明:由条件当=1≤x≤1时,|f(x)|≤1,取x=0得:|c|=|f(0)|≤1,即|c|≤1.
(2)证法一:依题设|f(0)|≤1而f(0)=c,所以|c|≤1.当a>0时,g(x)=ax+b在[-1,1]上是增函数,于是
g(-1)≤g(x)≤g(1),(-1≤x≤1).
∵|f(x)|≤1,(-1≤x≤1),|c|≤1,
∴g(1)=a+b=f(1)-c≤|f(1)|+|c|=2,
g(-1)=-a+b=-f(-1)+c≥-(|f(-2)|+|c|)≥-2,
因此得|g(x)|≤2 (-1≤x≤1);
当a<0时,g(x)=ax+b在[-1,1]上是减函数,于是g(-1)≥g(x)≥g(1),(-1≤x≤1),
∵|f(x)|≤1 (-1≤x≤1),|c|≤1
∴|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2.
综合以上结果,当-1≤x≤1时,都有|g(x)|≤2.
证法二:∵|f(x)|≤1(-1≤x≤1)
∴|f(-1)|≤1,|f(1)|≤1,|f(0)|≤1,
∵f(x)=ax2+bx+c,∴|a-b+c|≤1,|a+b+c|≤1,|c|≤1,
因此,根据绝对值不等式性质得:
|a-b|=|(a-b+c)-c|≤|a-b+c|+|c|≤2,
|a+b|=|(a+b+c)-c|≤|a+b+c|+|c|≤2,
∵g(x)=ax+b,∴|g(±1)|=|±a+b|=|a±b|≤2,
函数g(x)=ax+b的图象是一条直线,因此|g(x)|在[-1,1]上的最大值只能在区间的端点x=-1或x=1处取得,于是由|g(±1)|≤2得|g(x)|≤2,(-1<x<1.
当-1≤x≤1时,有0≤≤1,-1≤≤0,
∵|f(x)|≤1,(-1≤x≤1),∴|f |≤1,|f()|≤1;
因此当-1≤x≤1时,|g(x)|≤|f |+|f()|≤2.
(3)解:因为a>0,g(x)在[-1,1]上是增函数,当x=1时取得最大值2,即
g(1)=a+b=f(1)-f(0)=2. ①
∵-1≤f(0)=f(1)-2≤1-2=-1,∴c=f(0)=-1.
因为当-1≤x≤1时,f(x)≥-1,即f(x)≥f(0),
根据二次函数的性质,直线x=0为f(x)的图象的对称轴,
由此得-<0 ,即b=0.
由①得a=2,所以f(x)=2x2-1.
【范例3】已知二次函数的图像经过坐标原点,其导函数为.数列的前项和为,点均在函数的图像上.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,是数列的前项和,求使得对所有都成立的最小正整数.
点评:本小题考查二次函数、等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题的能力和推理能力。
解:(Ⅰ)设这二次函数f(x)=ax2+bx (a≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x-2,得
a=3 , b=-2, 所以 f(x)=3x2-2x.
又因为点均在函数的图像上,所以=3n2-2n.
当n≥2时,an=Sn-Sn-1=(3n2-2n)-=6n-5.
当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()
(Ⅱ)由(Ⅰ)得知==,
故Tn===(1-).
因此,要使(1-)<()成立的m,必须且仅须满足≤,即m≥10,所以满足要求的最小正整数m为10.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com