如图.直二面角D-AB-E中.四边形ABCD是边长为2的正方形.AE=EB.F为CE上的点.且BF⊥平面ACE. (1)求证:AE⊥平面BCE, (2)求二面角B-AC-E的大小, (3)求点D到平面ACE的距离. 唐山二中2008-2009学年度高二年级第二学期期末考试 查看更多

 

题目列表(包括答案和解析)

 

1.   (本小题满分12分)

如图,直四棱柱ABCDA1B1C1D1的高为3,底面是边长为4且∠DAB = 60°的菱形,ACBD = OA1C1B1D1 = O1EO1A的中点.

(1)  求二面角O1BCD的大小;

(2)  求点E到平面O1BC的距离.

 
 

 

 

 

 

 

 

 

 

查看答案和解析>>


19. (本小题满分12分)
如图,直四棱柱ABCDA1B1C1D1的高为3,底面是边长为4且∠DAB = 60°的菱形,ACBD = OA1C1B1D1 = O1EO1A的中点.
(1) 求二面角O1BCD的大小;
(2) 求点E到平面O1BC的距离.


 
 

 

查看答案和解析>>

(本小题满分12分)如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a

    D、E分别为棱AB、BC的中点, M为棱AA1­上的点,二面角MDEA为30°.

   (1)求MA的长;w.w.w.k.s.5.u.c.o.m      

   (2)求点C到平面MDE的距离。

查看答案和解析>>

( (本小题满分12分) 如图,在直三棱柱ABC—A1B1C1中,
.
(Ⅰ)若DAA1中点,求证:平面B1CD平面B1C1D
(Ⅱ)若二面角B1DCC1的大小为60°,求AD的长.

查看答案和解析>>

(本小题满分12分)如图,四棱锥P--ABCD中,PB底面ABCD.底面ABCD为直角梯形,AD∥BC,AB=AD=PB=3,BC=6.点E在棱PA上,且PE=2EA.

(1)求异面直线PA与CD所成的角;

(2)求证:PC∥平面EBD;

(3)求二面角A—BE--D的余弦值.

 

查看答案和解析>>


同步练习册答案