题目列表(包括答案和解析)
若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:
分组 |
频数 |
频率 |
[-3, -2) |
|
0.10 |
[-2, -1) |
8 |
|
(1,2] |
|
0.50 |
(2,3] |
10 |
|
(3,4] |
|
|
合计 |
50 |
1.00 |
(Ⅰ)将上面表格中缺少的数据填在答题卡的相应位置;
(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;
(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。
【解析】(Ⅰ)
分组 |
频数 |
频率 |
[-3, -2) |
5 |
0.10 |
[-2, -1) |
8 |
0.16 |
(1,2] |
25 |
0.50 |
(2,3] |
10 |
0.2 |
(3,4] |
2 |
0.04 |
合计 |
50 |
1.00 |
(Ⅱ)根据频率分布表可知,落在区间(1,3]内频数为35,故所求概率为0.7.
(Ⅲ)由题可知不合格的概率为0.01,故可求得这批产品总共有2000,故合格的产品有1980件。
设椭圆 :()的一个顶点为,,分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 的直线 与椭圆 交于 , 两点.
(1)求椭圆的方程;
(2)是否存在直线 ,使得 ,若存在,求出直线 的方程;若不存在,说明理由;
【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为,即又因为,得到,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合得到结论。
解:(1)椭圆的顶点为,即
,解得, 椭圆的标准方程为 --------4分
(2)由题可知,直线与椭圆必相交.
①当直线斜率不存在时,经检验不合题意. --------5分
②当直线斜率存在时,设存在直线为,且,.
由得, ----------7分
,,
=
所以, ----------10分
故直线的方程为或
即或
A、甲、乙两队得分的平均数相等 | B、甲、乙两队得分的中位数相等 | C、甲、乙两队得分的极差相等 | D、甲、乙两队得分在[30,39)分数段的频率相等 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com