6.二次函数的图象是抛物线: (1)顶点坐标为,(2)对称轴, (3)开口方向:.向上. .向下. 应用:①“三个二次 (二次函数.二次方程.二次不等式)的关系 --二次方程 时.两根为二次函数的图像与轴的两个焦点.也是二次不等式解集的端点值 ②求闭区间[m.n]上的最值. ③求区间定的最值问题. ④一元二次方程根的分布问题. 例如:二次方程的两根都大于 一根大于一根小于 查看更多

 

题目列表(包括答案和解析)

我们知道,二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,那么这条抛物线的顶点坐标、焦点坐标、准线方程如何确定?

探究:对于二次函数的解析式进行配方,注意观察与抛物线的标准方程形式对比,可以发现其方程形式与标准方程中的一种形式有些相似,借助于图象的平移不难得到其顶点坐标、焦点坐标和准线方程.

查看答案和解析>>

已知:在平面直角坐标系xOy中,二次函数y=x2-(m+1)x-m-2的图象与x轴交于A、B两点,点A在x轴的负半轴,点B在x轴的正半轴,与y轴交于点C,且OB=3OA.
(1)求这个二次函数的解析式;
(2)设抛物线的顶点为D,过点A的直线y=
1
2
x+
1
2
与抛物线交于点E.问:在抛物线的对称轴上是否存在这样的点F,使得△ABE与以B、D、F为顶点的三角形相似,若存在,求出点F的坐标;若不存在,请说明理由;
(3)点G(x,1)在抛物线上,求出过点A、B、G的圆的圆心的坐标.

查看答案和解析>>

已知:在平面直角坐标系xOy中,二次函数y=x2-(m+1)x-m-2的图象与x轴交于A、B两点,点A在x轴的负半轴,点B在x轴的正半轴,与y轴交于点C,且OB=3OA.
(1)求这个二次函数的解析式;
(2)设抛物线的顶点为D,过点A的直线y=
1
2
x+
1
2
与抛物线交于点E.问:在抛物线的对称轴上是否存在这样的点F,使得△ABE与以B、D、F为顶点的三角形相似,若存在,求出点F的坐标;若不存在,请说明理由;
(3)点G(x,1)在抛物线上,求出过点A、B、G的圆的圆心的坐标.

查看答案和解析>>

已知:在平面直角坐标系xOy中,二次函数y=x2-(m+1)x-m-2的图象与x轴交于A、B两点,点A在x轴的负半轴,点B在x轴的正半轴,与y轴交于点C,且OB=3OA.
(1)求这个二次函数的解析式;
(2)设抛物线的顶点为D,过点A的直线与抛物线交于点E.问:在抛物线的对称轴上是否存在这样的点F,使得△ABE与以B、D、F为顶点的三角形相似,若存在,求出点F的坐标;若不存在,请说明理由;
(3)点G(x,1)在抛物线上,求出过点A、B、G的圆的圆心的坐标.

查看答案和解析>>


同步练习册答案