利用正弦定理体现了三角形中边角之间的关系.那么能否利用正弦定理与三角形的面积有何关系呢? 解析:① 如右图..所以 所以 即三角形面积公式为: 疑难导析: 查看更多

 

题目列表(包括答案和解析)

如图,A,B是海面上位于东西方向相距海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?

 

【解析】本试题考查了利用正弦定理和余弦定理求解三角形的实际运用。并考查了分析问题和解决问题的能力。

 

查看答案和解析>>

已知的三个内角所对的边分别为,且满足.

(1)求角的大小;

(2)若的面积为,求的值.

【解析】本试题主要是考查了解三角形中正弦定理和正弦面积公式的求解运用。

(1)因为,利用正弦定理得到C的值。

(2)根据,然后结合余弦定理得到C的值。

 

查看答案和解析>>

在△ABC中,为三个内角为三条边,

(I)判断△ABC的形状;

(II)若,求的取值范围.

【解析】本题主要考查正余弦定理及向量运算

第一问利用正弦定理可知,边化为角得到

所以得到B=2C,然后利用内角和定理得到三角形的形状。

第二问中,

得到。

(1)解:由及正弦定理有:

∴B=2C,或B+2C,若B=2C,且,∴;∴B+2C,则A=C,∴是等腰三角形。

(2)

 

查看答案和解析>>

如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点.现测得,并在点测得塔顶的仰角为, 求塔高(精确到

【解析】本试题主要考查了解三角形的运用,利用正弦定理在中,得到,然后在中,利用正切值可知

解:在中,

由正弦定理得:,所以

中,

 

查看答案和解析>>

正弦定理描述了任意三角形中怎样的边角关系?

查看答案和解析>>


同步练习册答案