20.已知椭圆C的中心在原点.焦点在x轴上.短轴的一个端点与两焦点的连线构成一个正三角形.且椭圆上点到焦点的最短距离为.求C的方程. 查看更多

 

题目列表(包括答案和解析)

已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线y=
1
4
x2
的焦点,离心率等于
2
2
.直线l与椭圆C交于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C的右焦点F是否可以为△BMN的垂心?若可以,求出直线l的方程;若不可以,请说明理由.

查看答案和解析>>

已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比是2:
3

(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当|
MP
|
最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线y=
1
4
x2
的焦点,离心率等于
2
5
5

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A,B两点,交y轴于M点,点F是椭圆C的右焦点,若
AF
=λ1
MA
BF
=λ2
MB
,求证:
λ1+λ2
λ1λ2
为定值.

查看答案和解析>>

(2012•昌平区一模)已知椭圆C的中心在原点,左焦点为(-
3
,0)
,离心率为
3
2
.设直线l与椭圆C有且只有一个公共点P,记点P在第一象限时直线l与x轴、y轴的交点分别为A、B,且向量
OM
=
OA
+
OB

求:
(I)椭圆C的方程;
(II)|
OM
|
的最小值及此时直线l的方程.

查看答案和解析>>

已知椭圆C的中心在原点,焦点在x轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形.
(1)求椭圆C的方程;
(2)设P(-4,0),过点P的直线l与椭圆C相交于M,N两点,当线段MN的中点落在正方形内(包括边界)时,求直线l的斜率的取值范围.

查看答案和解析>>


同步练习册答案