7.等差数列的共差.且.则的通项公式是 A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

设正数数列{an}的前n项和为Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an}的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k<1500}中,是否存在正整数m,使得不等式数学公式对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由;
(3)请构造一个与数列{Sn}有关的数列{un},使得数学公式存在,并求出这个极限值.

查看答案和解析>>

设正数数列{an}的前n项和为Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an}的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k<1500}中,是否存在正整数m,使得不等式对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由;
(3)请构造一个与数列{Sn}有关的数列{un},使得存在,并求出这个极限值.

查看答案和解析>>

设正数数列{an}的前n项和为Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an}的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k<1500}中,是否存在正整数m,使得不等式对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由;
(3)请构造一个与数列{Sn}有关的数列{un},使得存在,并求出这个极限值.

查看答案和解析>>

设正数数列的前项和为,且对任意的的等差中项.(1)求数列的通项公式;

    (2)在集合,且中,是否存在正整数,使得不等式对一切满足的正整数都成立?若存在,则这样的正整数共有多少个?并求出满足条件的最小正整数的值;若不存在,请说明理由;

    (3)请构造一个与数列有关的数列,使得存在,并求出这个极限值.

查看答案和解析>>

对于集合M={1,2,3…,2n,…},若集合A={a1,a2,…,an,…},B={b1,b2,…,bn,…},n∈N*,满足A∪B=M.
(1)若数列{an}的通项公式是,求等差数列{bn}的通项公式;
(2)若M为2n元集合,A∩B=∅且,则称A∪B是集合M的一种“等和划分”(A∪B与B∪A算是同一种划分).
已知集合M={1,2,…,12}
①若12∈A,集合A中有五个奇数,试确定集合A;
②试确定集合M共有多少种等和划分?

查看答案和解析>>


同步练习册答案