圆关于直线对称的圆的方程是( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

椭圆的两个焦点为F1(-c,0),F2(c,0),M是椭圆上的一点,且满足
(1)求离心率的取值范围;
(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为
①求此时椭圆G的方程;
②设斜率为k(k≠0)的直线L与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

椭圆的两个焦点为F1(-c,0),F2(c,0),M是椭圆上的一点,且满足
(1)求离心率的取值范围;
(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为
①求此时椭圆G的方程;
②设斜率为k(k≠0)的直线L与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

椭圆的两个焦点为F1(-c,0),F2(c,0),M是椭圆上的一点,且满足
(1)求离心率的取值范围;
(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为
①求此时椭圆G的方程;
②设斜率为k(k≠0)的直线L与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

椭圆的两个焦点为F1(-c,0),F2(c,0),M是椭圆上的一点,且满足
(1)求离心率的取值范围;
(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为
①求此时椭圆G的方程;
②设斜率为k(k≠0)的直线L与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

椭圆的中心是原点O,短轴长为2
3
,左焦点为F(-c,0)(c>0),相应的准线l与x轴交于点A,且点F分
AO
的比为3,过点A的直线与椭圆相交于P、Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若PF⊥QF,求直线PQ的方程;
(Ⅲ)设
AQ
AP
(λ>1),点Q关于x轴的对称点为Q′,求证:
FQ′
=-λ
FP

查看答案和解析>>


同步练习册答案