18.由框图可知 因为是等差数列.其公差为.则 或故 (Ⅱ). 查看更多

 

题目列表(包括答案和解析)

 [番茄花园1] (本题满分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足

(Ⅰ)求角C的大小;

(Ⅱ)求的最大值。

 (Ⅰ)解:由题意可知

absinC=,2abcosC.

所以tanC=.

因为0<C<

所以C=.

(Ⅱ)解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)

                        =sinA+cosA+sinA=sin(A+)≤.

当△ABC为正三角形时取等号,

所以sinA+sinB的最大值是.

 

 


 [番茄花园1]1.

查看答案和解析>>

已知函数为实数).

(Ⅰ)当时,求的最小值;

(Ⅱ)若上是单调函数,求的取值范围.

【解析】第一问中由题意可知:. ∵ ∴  ∴.

时,; 当时,. 故.

第二问.

时,,在上有递增,符合题意;  

,则,∴上恒成立.转化后解决最值即可。

解:(Ⅰ) 由题意可知:. ∵ ∴  ∴.

时,; 当时,. 故.

(Ⅱ) .

时,,在上有递增,符合题意;  

,则,∴上恒成立.∵二次函数的对称轴为,且

  .   综上

 

查看答案和解析>>

 如图是甲、乙两名射击运动员各射击10次后所得到的成绩的茎叶图(茎表示成绩的整数环数,叶表示小数点后的数字),由图可知(  )

A.甲、乙中位数的和为18.2,乙稳定性高B.甲、乙中位数的和为17.8,甲稳定性高

C.甲、乙中位数的和为18.5,甲稳定性高D.甲、乙中位数的和为18.65,乙稳定性高

查看答案和解析>>

汕头二中拟建一座长米,宽米的长方形体育馆.按照建筑要求,每隔米(为正常数)需打建一个桩位,每个桩位需花费万元(桩位视为一点且打在长方形的边上),桩位之间的米墙面需花万元,在不计地板和天花板的情况下,当为何值时,所需总费用最少?

【解析】本试题主要考查了导数在研究函数中的运用。先求需打个桩位.再求解墙面所需费用为:,最后表示总费用,利用导数判定单调性,求解最值。

解:由题意可知,需打个桩位. …………………2分

墙面所需费用为:,……4分

∴所需总费用)…7分

,则 

时,;当时,

∴当时,取极小值为.而在内极值点唯一,所以.∴当时,(万元),即每隔3米打建一个桩位时,所需总费用最小为1170万元.

 

查看答案和解析>>

为了考查某种大麦穗长的分布情况,在一块试验地里抽取了100个穗,量得它们的长度(单位:cm)之后,将所得数据以0.3 cm为组距,分成如下12个组:3.95~4.25,4.25~4.55,4.55~4.85,…,6.95~7.25,7.25~7.55,通过分析计算,最后画出频率分布直方图如下图:

由图可知

[  ]

A.长度在5.45~5.75 cm范围内的麦穗所占的比最大

B.长度在5.15~5.45 cm范围内的麦穗所占的比大于255

C.长度在5.75~6.05 cm范围内的麦穗的比最大

D.长度在5.45~5.75 cm范围内的麦穗比长度在6.35~6.65 cm范围内的麦穗少

查看答案和解析>>


同步练习册答案