12.(1)证明:连接AC.设AC∩BD=O.由条件得ABCD为正方形.故O为AC中点.因为E为CC1中点.所以OE∥AC1.因为OEÌ平面BDE.AC1(/平面BDE.所以AC1∥平面BDE. (2)连接B1E.设AB=a.则在△BB1E中.BE=B1E=a.BB1=2a.所以BE2+B1E2=BB12.所以B1E^BE.由正四棱柱得.A1B1^平面BB1C1C.所以A1B1^BE.所以BE^平面A1B1E.所以A1E^BE.同理A1E^DE.所以A1E^平面BDE. 查看更多

 

题目列表(包括答案和解析)

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、

PC的中点.

(1)求证:EF∥平面PAD;

(2)求证:EF⊥CD;

(3)若ÐPDA=45°求EF与平面ABCD所成的角的大小.

【解析】本试题主要考查了线面平行和线线垂直的运用,以及线面角的求解的综合运用

第一问中,利用连AC,设AC中点为O,连OF、OE在△PAC中,∵ F、O分别为PC、AC的中点   ∴ FO∥PA …………①在△ABC中,∵ E、O分别为AB、AC的中点 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二问中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO为EF在平面AC内的射影       ∴ CD⊥EF.

第三问中,若ÐPDA=45°,则 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

证:连AC,设AC中点为O,连OF、OE(1)在△PAC中,∵ F、O分别为PC、AC的中点∴ FO∥PA …………①    在△ABC中,∵ E、O分别为AB、AC的中点  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO为EF在平面AC内的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,则 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

选修4-1:几何证明选讲
如图设M为线段AB中点,AE与BD交于点C∠DME=∠A=∠B=α,且DM交AC于F,EM交BD于G.
(1)写出图中三对相似三角形,并对其中一对作出证明;
(2)连接FG,设α=45°,AB=4
2
,AF=3,求FG长.

查看答案和解析>>

如图6,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

(Ⅰ)证明:BD⊥PC;

(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.

【解析】(Ⅰ)因为

是平面PAC内的两条相较直线,所以BD平面PAC,

平面PAC,所以.

(Ⅱ)设AC和BD相交于点O,连接PO,由(Ⅰ)知,BD平面PAC,

所以是直线PD和平面PAC所成的角,从而.

由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因为四边形ABCD为等腰梯形,,所以均为等腰直角三角形,从而梯形ABCD的高为于是梯形ABCD面积

在等腰三角形AOD中,

所以

故四棱锥的体积为.

【点评】本题考查空间直线垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明BD平面PAC即可,第二问由(Ⅰ)知,BD平面PAC,所以是直线PD和平面PAC所成的角,然后算出梯形的面积和棱锥的高,由算得体积

 

查看答案和解析>>

选修4-1:几何证明选讲
如图设M为线段AB中点,AE与BD交于点C∠DME=∠A=∠B=α,且DM交AC于F,EM交BD于G.
(1)写出图中三对相似三角形,并对其中一对作出证明;
(2)连接FG,设α=45°,AB=4,AF=3,求FG长.

查看答案和解析>>

选修4-1:几何证明选讲
如图设M为线段AB中点,AE与BD交于点C∠DME=∠A=∠B=α,且DM交AC于F,EM交BD于G.
(1)写出图中三对相似三角形,并对其中一对作出证明;
(2)连接FG,设α=45°,AB=4,AF=3,求FG长.

查看答案和解析>>


同步练习册答案