设椭圆中心在坐标原点.焦点在轴上.一个顶点为.离心率为. (Ⅰ)求椭圆的方程, (Ⅱ)若椭圆左焦点为.右焦点为.过且斜率为的直线交椭圆于A..且.求直线的方程. 杭州二中2009学年第一学期高二年级期末考数学答题卷 查看更多

 

题目列表(包括答案和解析)

已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。

第一问中,可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

第二问中,

假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得

代入1,2式中得到范围。

(Ⅰ) 可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

 (Ⅱ) 假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是

 

查看答案和解析>>

(本小题满分12分)

    设椭圆中心在坐标原点,焦点在轴上,一个顶点坐标为,离心率为.

(1)求这个椭圆的方程;

(2)若这个椭圆左焦点为,右焦点为,过且斜率为1的直线交椭圆于两点,求的面积.

 

 

查看答案和解析>>

(本小题满分12分) 设椭圆中心在坐标原点,焦点在x轴上,一个顶点坐标为(2,0),离心率为.

(1)求这个椭圆的方程;

(2)若这个椭圆左焦点为F1,右焦点为F2,过F1且斜率为1的直线交椭圆于A、B两点,求的面积

(3)求椭圆上的点到直线的最小值。

查看答案和解析>>

(本小题满分12分)

设椭圆中心在坐标原点,是它的两个顶点,直线AB相交于点D,与椭圆相交于EF两点。

(Ⅰ)若,求的值;

(Ⅱ)求四边形面积的最大值。

查看答案和解析>>

(本题满分12分)如图,在平面直坐标系中,已知椭圆,经过点,其中e为椭圆的离心率.且椭圆与直线 有且只有一个交点。

(Ⅰ)求椭圆的方程;

(Ⅱ)设不经过原点的直线与椭圆相交与AB两点,第一象限内的点在椭圆上,直线平分线段,求:当的面积取得最大值时直线的方程。

 

查看答案和解析>>


同步练习册答案