题目列表(包括答案和解析)
已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.
【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。
第一问中,可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又,所以,
又由于
所求椭圆C的标准方程为
第二问中,
假设存在这样的直线,设,MN的中点为
因为|ME|=|NE|所以MNEF所以
(i)其中若时,则K=0,显然直线符合题意;
(ii)下面仅考虑情形:
由,得,
,得
代入1,2式中得到范围。
(Ⅰ) 可设椭圆的标准方程为
则由长轴长等于4,即2a=4,所以a=2.又,所以,
又由于
所求椭圆C的标准方程为
(Ⅱ) 假设存在这样的直线,设,MN的中点为
因为|ME|=|NE|所以MNEF所以
(i)其中若时,则K=0,显然直线符合题意;
(ii)下面仅考虑情形:
由,得,
,得……② ……………………9分
则.
代入①式得,解得………………………………………12分
代入②式得,得.
综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是
(本小题满分12分)
设椭圆中心在坐标原点,焦点在轴上,一个顶点坐标为,离心率为.
(1)求这个椭圆的方程;
(2)若这个椭圆左焦点为,右焦点为,过且斜率为1的直线交椭圆于、两点,求的面积.
(本小题满分12分) 设椭圆中心在坐标原点,焦点在x轴上,一个顶点坐标为(2,0),离心率为.
(1)求这个椭圆的方程;
(2)若这个椭圆左焦点为F1,右焦点为F2,过F1且斜率为1的直线交椭圆于A、B两点,求的面积
(3)求椭圆上的点到直线的最小值。
(本小题满分12分)
设椭圆中心在坐标原点,是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点。
(Ⅰ)若,求的值;
(Ⅱ)求四边形面积的最大值。
(本题满分12分)如图,在平面直坐标系中,已知椭圆,经过点,其中e为椭圆的离心率.且椭圆与直线 有且只有一个交点。
(Ⅰ)求椭圆的方程;
(Ⅱ)设不经过原点的直线与椭圆相交与A,B两点,第一象限内的点在椭圆上,直线平分线段,求:当的面积取得最大值时直线的方程。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com