已知点.直线为平面上的动点.过作直线的垂线.垂足为点.且 (Ⅰ)求动点的轨迹的方程, (Ⅱ)过点的直线交轨迹于两点.交直线于点.已知.求的值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)已知直四棱柱ABCDA1B1C1D1

底面是菱形,且∠DAB=60°,AD=AA1F为棱BB1的中点,

M为线段AC1的中点.   (1)求证:直线MF∥平面ABCD

   (2)求证:平面AFC1⊥平面ACC1A1

   (3)求平面AFC1与与平面ABCD所成二面角的大小.

查看答案和解析>>

(本小题满分13分)

已知双曲线G的中心在原点,它的渐近线与圆x2y2-10x+20=0相切.过点P(-4,0)作斜率为的直线l,使得lG交于AB两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.

 (1)求双曲线G的渐近线的方程;

(2)求双曲线G的方程;

(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.

 

查看答案和解析>>

(本小题满分13分)

已知椭圆过点,且点轴上的射影恰为椭圆的一个焦点

(Ⅰ)求椭圆的方程;

(Ⅱ)过作两条倾斜角互补的直线与椭圆分别交于两点.试问:四边形能否为平行四边形?若能,求出直线的方程;否则说明理由.

 

查看答案和解析>>

(本小题满分13分)已知直四棱柱ABCDA1B1C1D1
底面是菱形,且∠DAB=60°,AD=AA1F为棱BB1的中点,
M为线段AC1的中点.  (1)求证:直线MF∥平面ABCD
(2)求证:平面AFC1⊥平面ACC1A1
(3)求平面AFC1与与平面ABCD所成二面角的大小.

查看答案和解析>>

 (本小题满分13分)

已知双曲线G的中心在原点,它的渐近线与圆x2y2-10x+20=0相切.过点P(-4,0)作斜率为的直线l,使得lG交于AB两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.

(1)求双曲线G的渐近线的方程;

(2)求双曲线G的方程;

(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.

查看答案和解析>>


同步练习册答案