设椭圆的左右两个焦点分别为短轴的上端点为B.短轴上的两个三等分点为P.Q.且为正方形. (1)求椭圆的离心率, (2)若过点B作此正方形的外接圆的切线在轴上的一个截距为求此椭圆的方程. 查看更多

 

题目列表(包括答案和解析)

(本题满分15分)设椭圆 C1)的一个顶点与抛物线 C2 的焦点重合,F1,F2 分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 F2 的直线  与椭圆 C 交于 M,N 两点.

(I)求椭圆C的方程;

(II)是否存在直线 ,使得 ,若存在,求出直线  的方程;若不存在,说明理由;

(III)若 AB 是椭圆 C 经过原点 O 的弦,MN//AB,求证: 为定值.

 

查看答案和解析>>

(本题满分15分)

如图,已知椭圆的左、右顶点分别为AB,右焦点为F,直线l为椭圆的右准线,Nl上一动点,且在x轴上方,直线AN与椭圆交于点M

(1)若AM=MN,求∠AMB的余弦值;

(2)设过AFN三点的圆与y轴交于PQ两点,当

线段PQ的中点坐标为(0,9)时,求这个圆的方程.

查看答案和解析>>

(本题满分15分)设分别是椭圆的左、右焦点.

(1)若是该椭圆上的一个动点,求·的最大值和最小值;

(2)设过定点的直线与椭圆交于不同的两点,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

(本小题满分15分)

如图,椭圆的中心在原点,焦点在轴上,分别是椭圆的左、右焦点,是椭圆短轴的一个端点,过的直线与椭圆交于两点,的面积为的周长为

(1)求椭圆的方程;

(2)设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.

 

 

查看答案和解析>>

(本小题满分15分)

如图,椭圆的中心在原点,焦点在轴上,分别是椭圆的左、右焦点,是椭圆短轴的一个端点,过的直线与椭圆交于两点,的面积为的周长为

(1)求椭圆的方程;

(2)设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.

查看答案和解析>>


同步练习册答案