运用所知识完成练习二的5.6.7.8题. 第五课时:有关打折的实际问题 教学内容:教科书第8页的例4和“练一练 .练习三的第1~4题. 教学目标: 查看更多

 

题目列表(包括答案和解析)

熊大和熊二一共有60元.熊大的钱是熊二的5倍.熊大和熊二各有多少元?

查看答案和解析>>

化肥厂计划第二季度生产化肥1200吨,4月份完成计划的32%,5月份完成计划的36%,6月份再生产多少吨,就能超额完成原计划的5%?

查看答案和解析>>

化肥厂计划第二季度生产化肥1200吨,4月份完成计划的32%,5月份完成计划的36%,6月份再生产多少吨,就能超额完成原计划的5%?

查看答案和解析>>

南湖小学组织学生植树,共植杨树、柳树240棵所植柳树是杨树的5倍,植杨树、柳树各多少棵?

查看答案和解析>>

阅读下列材料,并解决后面的问题.
★阅读材料:
我国是历史上较早发现并运用“勾股定理”的国家之一.我中古代把直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.请运用“勾股定理”解决以下问题:

(1)如图一,分别以直角三角形的边为边长作正方形,其中s1=400,s2=225,则s3=
625
625

(2)如图二,是一个园柱形饮料罐,底面半径=8,高=15,顶面正中有一个小园孔,则一条直达底部的直吸管的最大长度是
17
17
.注:罐壁厚度和顶部园孔直径忽略不计.
(3)如图三,所示的直角三角形中,AB=6.则s1+s2的值=
13.5
13.5
. 注π值取3.
(4)如图四的圆柱,高=5厘米,底面半径=4厘米,在园柱底面A点有一只蚂蚁,它想吃到与A点相对的B点处的食物,需要爬行的路程是多少?小聪是这样思考的:
①将该园柱的侧面展开后得到一个长方形,如图五所示(A点的位置已经给出),请在图中中标出B点的位置并连接AB.
②小聪认为线段AB的长度是蚂蚁爬行的最短路程,那么蚂蚁爬行的最短路程是
13
13
厘米.注:π值取3.
(5)如图六,在长方形的底面A点有一只蚂蚁,想吃到上底面与A点相对的B点处的食物,它沿长方形表面爬行的最短路程是
15
15
厘米.

查看答案和解析>>


同步练习册答案