椭圆C:.直线l过点A.与C交于点B.与y轴交于点D,过原点的平行于l的直线与椭圆交于点E证明:成等比数列 查看更多

 

题目列表(包括答案和解析)

椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的离心率为
3
2
,且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=x+m与椭圆C交于两点A,B,O为坐标原点,若△OAB为直角三角形,求m的值.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长是短轴长的两倍,且过点A(2,1).
(1)求椭圆C的标准方程;
(2)若直线l:x-1-y=0与椭圆C交于不同的两点M,N,求|MN|的值.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,过右焦点F的直线l与椭圆C相交于A、B两点,当直线l的斜率为1时,坐标原点O到直线l的距离为
2
2

(1)求椭圆C的方程;
(2)如图,椭圆C上是否存在点P,使得当直线l绕点F转到某一位置时,有
OP
=
OA
+
OB
成立?若存在,求出所有满足条件的点P的坐标及对应的直线方程;若不存在,请说明理由.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
1
2
,且过点P(1,
3
2
).
(l)求椭圆C的方程;
(2)若斜率为1的直线l 与椭圆C交于A,B两点,O为坐标原点,且△OAB的面积为
6
2
7
,求l的方程.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,离心率为
2
2
,过点F1且垂直于x轴的直线被椭圆截得的弦长为
2
,直线l:y=kx+m与椭圆交于不同的A,B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆C上存在点Q满足:
OA
+
OB
OQ
(O为坐标原点).求实数λ的取值范围.

查看答案和解析>>


同步练习册答案