电场力做功与电势能改变的关系--方法与重力势能相对比 ①无论电荷的正负.电场力做正功.电势能减小.电场力做负功.电势能增加.做功和电势能的变化量在数值上是相等的 ②静电场中.电场力做功与路径无关.电势能的改变量与路径无关 查看更多

 

题目列表(包括答案和解析)

(1)如图1所示,在水平放置的光滑金属板中点的正上方有一带正电的点电荷Q,一表面绝缘带正电的金属小球(可视为质点,且不影响原电场)以速度v0在金属板上自左端向右端运动,小球做
匀速直线
匀速直线
运动;受到的电场力做的功为
0
0


(2)某研究性学习小组利用气垫导轨验证机械能守恒定律,实验装置如图2甲所示.在气垫导轨上相隔一定距离的两处安装两个光电传感器A、B,滑块P上固定一宽度为d的遮光条,若光线被遮光条遮挡,光电传感器会输出电压,两光电传感器采集数据后与计算机相连.滑块在细线的牵引下向左加速运动,遮光条经过光电传感器A、B时,通过计算机可以得到如图2乙所示的电压U随时间t变化的图象.
①实验前,接通气源,将滑块(不挂钩码)置于气垫导轨上,轻推滑块,当图2乙中的△t1
=
=
△t2(选填“>”、“=”或“<”)时,说明气垫导轨已经水平.
②滑块P用细线跨过定滑轮与质量为m的钩码Q相连,将滑块P由图2甲所示位置释放,通过计算机得到如图2乙所示图象,若△t1、△t2、d和m已知,要验证滑块和砝码组成的系统机械能是否守恒,还应测出的物理量是
滑块的质量
滑块的质量
两光电传感器间距离
两光电传感器间距离

(3)某金属材料制成的电阻Rr阻值随温度变化而变化,为了测量Rr在0到100℃之间的多个温度下的电阻阻值.某同学设计了如图3所示的电路.其中A为量程为1mA、内阻忽略不计的电流表,E为电源,R1为滑动变阻器,RB为电阻箱,S为单刀双掷开关.
①完成下面实验步骤中的填空:
a.调节温度,使得Rr的温度达到T1
b.将S拨向接点l,调节
滑动变阻器
滑动变阻器
,使电流表的指针偏转到适当位置,记下此时电流表的读数I;
c.将S拨向接点2,调节
电阻箱
电阻箱
,使
电流表示数为I
电流表示数为I
,记下此时电阻箱的读数R0
d.则当温度为T1时,电阻Rr=
R0
R0

e.改变Rr的温度,在每一温度下重复步骤②③④,即可测得电阻温度随温度变化的规律.
②由上述实验测得该金属材料制成的电阻Rr随温度t变化的图象如4图甲所示.若把该电阻与电池(电动势E=1.5V,内阻不计)、电流表(量程为5mA、内阻Rg=100Ω)、电阻箱R′串联起来,连成如图4乙所示的电路,用该电阻作测温探头,把电流表的电流刻度改为相应的温度刻度,就得到了一个简单的“金属电阻温度计”.
a.电流刻度较大处对应的温度刻度
较小
较小
;(填“较大”或“较小”)
b.若电阻箱取值阻值R'=50Ω,则电流表5mA处对应的温度数值为
50
50
℃.

查看答案和解析>>

精英家教网
(1)如图(1)为“电流天平”,可用于测定磁感应强度.在天平的右端挂有一矩形线圈,设其匝数n=5匝,底边cd长L=
20cm,放在垂直于纸面向里的待测匀强磁场中,且线圈平面与磁场垂直.当线圈中通入如图方向的电流I=100mA时,调节砝码使天平平衡.若保持电流大小不变,使电流方向反向,则要在天平右盘加质量m=8.2g的砝码,才能使天平再次平衡.则cd边所受的安培力大小为
 
 N,磁感应强度B的大小为
 
T(g=10m/s2).
(2)某课外兴趣小组利用如图(2)的实验装置研究“合外力做功和物体动能变化之间的关系”以及“加速度与合外力的关系”1 该小组同学实验时先正确平衡摩擦力,并利用钩码和小车之间连接的力传感器测出细线上的拉力,改变钩码的个数,确定加速度a与细线上拉力F的关系,如图图象中能表示该同学实验结果的是
 

A.精英家教网B.精英家教网C.精英家教网D.精英家教网
②在上述实验中打点计时器使用的交流电频率为50Hz,某此实验中一段纸带的打点记录如图(3)所示,则小车运动的加速度大小为
 
m/s2(保留3位有效数字)
③实验时,小车由静止开始释放,已知释放时钩码底端离地高度为H,现测出的物理量还有:小车由静止开始起发生的位移s(s<H)、小车发生位移s时的速度大小为v,钩码的质量为m,小车的总质量为M,设重力加速度为g,则mgs
 
 (选填“大于”、“小于”或“等于”)小车动能的变化;
(3)利用如图(4)所示电路测量一量程为300mV的电压表的内阻RV,RV约为300Ω.
a、请补充完整某同学的实验步骤:
①按电路图正确连接好电路,把滑动变阻器R的滑片P滑到
 
(填“a”或“b”)端,闭合开关S2,并将电阻箱R0的阻值调到较大;
②闭合开关S1,调节滑动变阻器滑片的位置,使电压表的指针指到满刻度;
③保持开关S1闭合和滑动变阻器滑片P的位置不变,断开开关S2,调整电阻箱R0的阻值大小,使电压表的指针指到满刻度的
 
;读出此时电阻箱R0的阻值,即等于电压表内阻RV
b、实验所提供的器材除待测电压表、电阻箱(最大阻值999.9Ω)、电池(电动势约1.5V,内阻可忽略不计)、导线和开关之外,还有如下可供选择的实验器材:
A.滑动变阻器(最大阻值150Ω)B.滑动变阻器(最大阻值50Ω)
为了使测量比较精确,从可供选择的实验器材中,滑动变阻器R应选用
 
(填序号).
c、对于上述测量方法,从实验原理分析可知,在测量无误的情况下,实际测出的电压表内阻的测量值R
 
(填“大于”、“小于”或“等于”)真实值RV;且在其他条件不变的情况下,若R越大,其测量值R的误差就越
 
(填“大”或“小”).

查看答案和解析>>


精英家教网

(1)如图(1)为“电流天平”,可用于测定磁感应强度.在天平的右端挂有一矩形线圈,设其匝数n=5匝,底边cd长L=
20cm,放在垂直于纸面向里的待测匀强磁场中,且线圈平面与磁场垂直.当线圈中通入如图方向的电流I=100mA时,调节砝码使天平平衡.若保持电流大小不变,使电流方向反向,则要在天平右盘加质量m=8.2g的砝码,才能使天平再次平衡.则cd边所受的安培力大小为______ N,磁感应强度B的大小为______T(g=10m/s2).
(2)某课外兴趣小组利用如图(2)的实验装置研究“合外力做功和物体动能变化之间的关系”以及“加速度与合外力的关系”1 该小组同学实验时先正确平衡摩擦力,并利用钩码和小车之间连接的力传感器测出细线上的拉力,改变钩码的个数,确定加速度a与细线上拉力F的关系,如图图象中能表示该同学实验结果的是______
A.
精英家教网
B.
精英家教网
C.
精英家教网
D.
精英家教网

②在上述实验中打点计时器使用的交流电频率为50Hz,某此实验中一段纸带的打点记录如图(3)所示,则小车运动的加速度大小为______m/s2(保留3位有效数字)
③实验时,小车由静止开始释放,已知释放时钩码底端离地高度为H,现测出的物理量还有:小车由静止开始起发生的位移s(s<H)、小车发生位移s时的速度大小为v,钩码的质量为m,小车的总质量为M,设重力加速度为g,则mgs______ (选填“大于”、“小于”或“等于”)小车动能的变化;
(3)利用如图(4)所示电路测量一量程为300mV的电压表的内阻RV,RV约为300Ω.
a、请补充完整某同学的实验步骤:
①按电路图正确连接好电路,把滑动变阻器R的滑片P滑到______(填“a”或“b”)端,闭合开关S2,并将电阻箱R0的阻值调到较大;
②闭合开关S1,调节滑动变阻器滑片的位置,使电压表的指针指到满刻度;
③保持开关S1闭合和滑动变阻器滑片P的位置不变,断开开关S2,调整电阻箱R0的阻值大小,使电压表的指针指到满刻度的______;读出此时电阻箱R0的阻值,即等于电压表内阻RV
b、实验所提供的器材除待测电压表、电阻箱(最大阻值999.9Ω)、电池(电动势约1.5V,内阻可忽略不计)、导线和开关之外,还有如下可供选择的实验器材:
A.滑动变阻器(最大阻值150Ω)B.滑动变阻器(最大阻值50Ω)
为了使测量比较精确,从可供选择的实验器材中,滑动变阻器R应选用______(填序号).
c、对于上述测量方法,从实验原理分析可知,在测量无误的情况下,实际测出的电压表内阻的测量值R______(填“大于”、“小于”或“等于”)真实值RV;且在其他条件不变的情况下,若R越大,其测量值R的误差就越______(填“大”或“小”).

查看答案和解析>>


(1)如图(1)为“电流天平”,可用于测定磁感应强度.在天平的右端挂有一矩形线圈,设其匝数n=5匝,底边cd长L=
20cm,放在垂直于纸面向里的待测匀强磁场中,且线圈平面与磁场垂直.当线圈中通入如图方向的电流I=100mA时,调节砝码使天平平衡.若保持电流大小不变,使电流方向反向,则要在天平右盘加质量m=8.2g的砝码,才能使天平再次平衡.则cd边所受的安培力大小为     N,磁感应强度B的大小为    T(g=10m/s2).
(2)某课外兴趣小组利用如图(2)的实验装置研究“合外力做功和物体动能变化之间的关系”以及“加速度与合外力的关系”1 该小组同学实验时先正确平衡摩擦力,并利用钩码和小车之间连接的力传感器测出细线上的拉力,改变钩码的个数,确定加速度a与细线上拉力F的关系,如图图象中能表示该同学实验结果的是   
A.B.C.D.
②在上述实验中打点计时器使用的交流电频率为50Hz,某此实验中一段纸带的打点记录如图(3)所示,则小车运动的加速度大小为    m/s2(保留3位有效数字)
③实验时,小车由静止开始释放,已知释放时钩码底端离地高度为H,现测出的物理量还有:小车由静止开始起发生的位移s(s<H)、小车发生位移s时的速度大小为v,钩码的质量为m,小车的总质量为M,设重力加速度为g,则mgs     (选填“大于”、“小于”或“等于”)小车动能的变化;
(3)利用如图(4)所示电路测量一量程为300mV的电压表的内阻RV,RV约为300Ω.
a、请补充完整某同学的实验步骤:
①按电路图正确连接好电路,把滑动变阻器R的滑片P滑到    (填“a”或“b”)端,闭合开关S2,并将电阻箱R的阻值调到较大;
②闭合开关S1,调节滑动变阻器滑片的位置,使电压表的指针指到满刻度;
③保持开关S1闭合和滑动变阻器滑片P的位置不变,断开开关S2,调整电阻箱R的阻值大小,使电压表的指针指到满刻度的    ;读出此时电阻箱R的阻值,即等于电压表内阻RV
b、实验所提供的器材除待测电压表、电阻箱(最大阻值999.9Ω)、电池(电动势约1.5V,内阻可忽略不计)、导线和开关之外,还有如下可供选择的实验器材:
A.滑动变阻器(最大阻值150Ω)B.滑动变阻器(最大阻值50Ω)
为了使测量比较精确,从可供选择的实验器材中,滑动变阻器R应选用    (填序号).
c、对于上述测量方法,从实验原理分析可知,在测量无误的情况下,实际测出的电压表内阻的测量值R    (填“大于”、“小于”或“等于”)真实值RV;且在其他条件不变的情况下,若R越大,其测量值R的误差就越    (填“大”或“小”).

查看答案和解析>>

第十部分 磁场

第一讲 基本知识介绍

《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。

一、磁场与安培力

1、磁场

a、永磁体、电流磁场→磁现象的电本质

b、磁感强度、磁通量

c、稳恒电流的磁场

*毕奥-萨伐尔定律(Biot-Savart law):对于电流强度为I 、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB 。矢量式d= k,(d表示导体元段的方向沿电流的方向、为导体元段到考查点的方向矢量);或用大小关系式dB = k结合安培定则寻求方向亦可。其中 k = 1.0×10?7N/A2 。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。

毕萨定律应用在“无限长”直导线的结论:B = 2k 

*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI 

*毕萨定律应用在“无限长”螺线管内部的结论:B = 2πknI 。其中n为单位长度螺线管的匝数。

2、安培力

a、对直导体,矢量式为 = I;或表达为大小关系式 F = BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。

b、弯曲导体的安培力

⑴整体合力

折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。

证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为

F = 

  = BI

  = BI

关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。

证毕。

由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。(说明:这个结论只适用于匀强磁场。)

⑵导体的内张力

弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。

c、匀强磁场对线圈的转矩

如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为

M = BIS

几种情形的讨论——

⑴增加匝数至N ,则 M = NBIS ;

⑵转轴平移,结论不变(证明从略);

⑶线圈形状改变,结论不变(证明从略);

*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα ,如图9-3;

证明:当α = 90°时,显然M = 0 ,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…

⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ ,如图9-4。

证明:当β = 90°时,显然M = 0 ,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…

说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。

二、洛仑兹力

1、概念与规律

a、 = q,或展开为f = qvBsinθ再结合左、右手定则确定方向(其中θ为的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。

b、能量性质

由于总垂直确定的平面,故总垂直 ,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。

问题:安培力可以做功,为什么洛仑兹力不能做功?

解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v ,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1 = qv1B的合力(见图9-5)。

很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10?5m/s数量级,而v2一般都在10?2m/s数量级以上,致使f1只是f的一个极小分量。)

☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?

若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。所以,导体棒动能的增加是以回路焦耳热的减少为代价的。

2、仅受洛仑兹力的带电粒子运动

a、时,匀速圆周运动,半径r =  ,周期T = 

b、成一般夹角θ时,做等螺距螺旋运动,半径r =  ,螺距d = 

这个结论的证明一般是将分解…(过程从略)。

☆但也有一个问题,如果将分解(成垂直速度分量B2和平行速度分量B1 ,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B2的平面内做圆周运动?

其实,在图9-7中,B1平行v只是一种暂时的现象,一旦受B2的洛仑兹力作用,v改变方向后就不再平行B1了。当B1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。(而在分解v的处理中,这种局面是不会出现的。)

3、磁聚焦

a、结构:见图9-8,K和G分别为阴极和控制极,A为阳极加共轴限制膜片,螺线管提供匀强磁场。

b、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P点。

4、回旋加速器

a、结构&原理(注意加速时间应忽略)

b、磁场与交变电场频率的关系

因回旋周期T和交变电场周期T′必相等,故 =

c、最大速度 vmax = = 2πRf

5、质谱仪

速度选择器&粒子圆周运动,和高考要求相同。

第二讲 典型例题解析

一、磁场与安培力的计算

【例题1】两根无限长的平行直导线a、b相距40cm,通过电流的大小都是3.0A,方向相反。试求位于两根导线之间且在两导线所在平面内的、与a导线相距10cm的P点的磁感强度。

【解说】这是一个关于毕萨定律的简单应用。解题过程从略。

【答案】大小为8.0×10?6T ,方向在图9-9中垂直纸面向外。

【例题2】半径为R ,通有电流I的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。

【解说】本题有两种解法。

方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。因为θ 

查看答案和解析>>


同步练习册答案