传播振动的形式--振幅 周期 频率(振源如何振动.质点就如何振动) 查看更多

 

题目列表(包括答案和解析)

(1)下列说法正确的是
AE
AE

A.地面附近有一高速水平飞过的火箭,地面上的人观察到的“火箭长度”要比火箭上的人观察到的“火箭长度”短一些
B.拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度
C.变化的电场一定产生变化的磁场;变化的磁场一定产生变化的电场
D.单摆在周期性外力作用下做受迫振动,其振动周期与单摆的摆长有关
E.次声波是频率低于20Hz的声波;它比超声波更易发生衍射
F.一列加速驶出车站的火车,站台上的人听到汽笛音调变高了
(2)空间中存在一列向右传播的简谐横波,波速为2m/s,在t=0时刻的波形如图(1)所示.试写出x=2.0m处质点的位移--时间关系表达式
A
A
;若空间中存在振幅不同,波速相同的两列机械波相向传播,它们的周期均为T,t=0时刻两列波的波形如图(2)所示,请定性画出t1=
T4
时刻的波形图.
(3)如图(3)所示,置于空气中的一不透明容器内盛满某种透明液体,容器高为6.0cm,其底部紧靠器壁处有一竖直放置的3.0cm长的线光源,顶部一部分开口,另一部分封闭,封闭部分的内表面涂有8.0cm长的吸光物质(光线射到吸光物质上,会被全部吸收),靠近容器右端有一水平放置的与液面等高的望远镜用来观察线光源,此时通过望远镜恰好只能看到线光源的底端.求此液体的折射率n.

查看答案和解析>>

(1)下列说法正确的是______
A.地面附近有一高速水平飞过的火箭,地面上的人观察到的“火箭长度”要比火箭上的人观察到的“火箭长度”短一些
B.拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度
C.变化的电场一定产生变化的磁场;变化的磁场一定产生变化的电场
D.单摆在周期性外力作用下做受迫振动,其振动周期与单摆的摆长有关
E.次声波是频率低于20Hz的声波;它比超声波更易发生衍射
F.一列加速驶出车站的火车,站台上的人听到汽笛音调变高了
(2)空间中存在一列向右传播的简谐横波,波速为2m/s,在t=0时刻的波形如图(1)所示.试写出x=2.0m处质点的位移--时间关系表达式______;若空间中存在振幅不同,波速相同的两列机械波相向传播,它们的周期均为T,t=0时刻两列波的波形如图(2)所示,请定性画出时刻的波形图.
(3)如图(3)所示,置于空气中的一不透明容器内盛满某种透明液体,容器高为6.0cm,其底部紧靠器壁处有一竖直放置的3.0cm长的线光源,顶部一部分开口,另一部分封闭,封闭部分的内表面涂有8.0cm长的吸光物质(光线射到吸光物质上,会被全部吸收),靠近容器右端有一水平放置的与液面等高的望远镜用来观察线光源,此时通过望远镜恰好只能看到线光源的底端.求此液体的折射率n.

查看答案和解析>>

 【选做题】本题包括A、B、C三小题,请选定其中两题,并在相应的答题区域内作答。若三题都做,则按A、B两题评分。

A.(选修模块3-3)(12分)

1.下列说法中正确的是(      )

A.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体

B.一定质量气体压强不变温度升高时,吸收的热量一定大于内能的增加量

C.因为扩散现象和布朗运动的剧烈程度都与温度有关,所以扩散现象和布朗运动也叫做热运动

D.液体的表面层就象张紧的橡皮膜而表现出表面张力,是因为表面层的分子分布比液体内部紧密

2.将1ml的纯油酸配成500ml的油酸酒精溶液,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴,则每滴油酸酒精溶液的体积为______ml。现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的直径是_________m(保留一位有效数字)。

3.如图所示,一直立汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁导热良好,开始时活塞被螺栓K固定。现打开螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g

(1)求活塞停在B点时缸内封闭气体的压强p

(2)设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q

 

B.(选修模块3-4)(12分)

(1)下列说法中正确的是(      )

A.眼睛直接观察全息照片不能看到立体图象

B.电磁波和机械波都能产生干涉和衍射现象

C.驱动力频率等于系统固有频率时,受迫振动的振幅最大,这种现象叫共振。

D.在测定单摆周期时,为减小实验误差,最好在小球经过最高点时开始计时

(2)相对论论认为时间和空间与物质的速度有关;在高速前进中的列车的中点处,某乘客突然按下手电筒,使其发出一道闪光,该乘客认为闪光向前、向后传播的速度相等,都为c,站在铁轨旁边地面上的观察者认为闪光向前、向后传播的速度_______(填“相等”、“不等”)。并且,车上的乘客认为,电筒的闪光同时到达列车的前、后壁,地面上的观察者认为电筒的闪光先到达列车的______(填“前”、“后”)壁。

(3)如图所示,某列波在t=0时刻的波形如图中实线,虚线为t=0.3s(该波的周期T>0.3s)时刻的波形图。已知t=0时刻质点P正在做加速运动,求质点P振动的周期和波的传播速度。

 

C.(选修模块3-5)(12分)

(1)下列说法正确的是(      )

A.电子的衍射现象说明实物粒子的波动性

B.235U的半衰期约为7亿年,随地球环境的变化,半衰期可能变短

C.原子核内部某个质子转变为中子时,放出β射线

D.氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时电子的动能增加,电势能减小

(2)2009年诺贝尔物理学奖得主威拉德·博伊尔和乔治·史密斯主要成就是发明了电荷耦合器件(CCD)图像传感器。他们的发明利用了爱因斯坦的光电效应原理。如图所示电路可研究光电效应规律。图中标有A和K的为光电管,其中K为阴极,A为阳级。理想电流计可检测通过光电管的电流,理想电压表用来指示光电管两端的电压。现接通电源,用光子能量为10.5eV的光照射阴极K,电流计中有示数,若将滑动变阻器的滑片P缓慢向右滑动,电流计的读数逐渐减小,当滑至某一位置时电流计的读数恰好为零,读出此时电压表的示数为6.0V;现保持滑片P位置不变,光电管阴极材料的逸出功为________,若增大入射光的强度,电流计的读数________(填“为零”或“不为零”)。

(3)一个静止的,放出一个速度为v1的粒子,同时产生一个新核,并释放出频率为γ光子。写出该核反应方程式,求出这个核反应中产生的新核的速度v2。(不计光子的动量)

 

 

查看答案和解析>>

第六部分 振动和波

第一讲 基本知识介绍

《振动和波》的竞赛考纲和高考要求有很大的不同,必须做一些相对详细的补充。

一、简谐运动

1、简谐运动定义:= -k             

凡是所受合力和位移满足①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。

谐振子的加速度:= -

2、简谐运动的方程

回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x方向的投影),圆周运动的半径即为简谐运动的振幅A 。

依据:x = -mω2Acosθ= -mω2

对于一个给定的匀速圆周运动,m、ω是恒定不变的,可以令:

2 = k 

这样,以上两式就符合了简谐运动的定义式①。所以,x方向的位移、速度、加速度就是简谐运动的相关规律。从图1不难得出——

位移方程: = Acos(ωt + φ)                                        ②

速度方程: = -ωAsin(ωt +φ)                                     ③

加速度方程:= -ω2A cos(ωt +φ)                                   ④

相关名词:(ωt +φ)称相位,φ称初相。

运动学参量的相互关系:= -ω2

A = 

tgφ= -

3、简谐运动的合成

a、同方向、同频率振动合成。两个振动x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振动x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得

A =  ,φ= arctg 

显然,当φ2-φ1 = 2kπ时(k = 0,±1,±2,…),合振幅A最大,当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),合振幅最小。

b、方向垂直、同频率振动合成。当质点同时参与两个垂直的振动x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t后,得一般形式的轨迹方程为

+-2cos(φ2-φ1) = sin22-φ1)

显然,当φ2-φ1 = 2kπ时(k = 0,±1,±2,…),有y = x ,轨迹为直线,合运动仍为简谐运动;

当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),有+= 1 ,轨迹为椭圆,合运动不再是简谐运动;

当φ2-φ1取其它值,轨迹将更为复杂,称“李萨如图形”,不是简谐运动。

c、同方向、同振幅、频率相近的振动合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合运动x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合运动是振动,但不是简谐运动,称为角频率为的“拍”现象。

4、简谐运动的周期

由②式得:ω=  ,而圆周运动的角速度和简谐运动的角频率是一致的,所以

T = 2π                                                      

5、简谐运动的能量

一个做简谐运动的振子的能量由动能和势能构成,即

mv2 + kx2 = kA2

注意:振子的势能是由(回复力系数)k和(相对平衡位置位移)x决定的一个抽象的概念,而不是具体地指重力势能或弹性势能。当我们计量了振子的抽象势能后,其它的具体势能不能再做重复计量。

6、阻尼振动、受迫振动和共振

和高考要求基本相同。

二、机械波

1、波的产生和传播

产生的过程和条件;传播的性质,相关参量(决定参量的物理因素)

2、机械波的描述

a、波动图象。和振动图象的联系

b、波动方程

如果一列简谐波沿x方向传播,振源的振动方程为y = Acos(ωt + φ),波的传播速度为v ,那么在离振源x处一个振动质点的振动方程便是

y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕

这个方程展示的是一个复变函数。对任意一个时刻t ,都有一个y(x)的正弦函数,在x-y坐标下可以描绘出一个瞬时波形。所以,称y = Acos〔ω(t - )+ φ〕为波动方程。

3、波的干涉

a、波的叠加。几列波在同一介质种传播时,能独立的维持它们的各自形态传播,在相遇的区域则遵从矢量叠加(包括位移、速度和加速度的叠加)。

b、波的干涉。两列波频率相同、相位差恒定时,在同一介质中的叠加将形成一种特殊形态:振动加强的区域和振动削弱的区域稳定分布且彼此隔开。

我们可以用波程差的方法来讨论干涉的定量规律。如图2所示,我们用S1和S2表示两个波源,P表示空间任意一点。

当振源的振动方向相同时,令振源S1的振动方程为y1 = A1cosωt ,振源S1的振动方程为y2 = A2cosωt ,则在空间P点(距S1为r1 ,距S2为r2),两振源引起的分振动分别是

y1′= A1cos〔ω(t ? )〕

y2′= A2cos〔ω(t ? )〕

P点便出现两个频率相同、初相不同的振动叠加问题(φ1 =  ,φ2 = ),且初相差Δφ= (r2 – r1)。根据前面已经做过的讨论,有

r2 ? r1 = kλ时(k = 0,±1,±2,…),P点振动加强,振幅为A1 + A2 

r2 ? r1 =(2k ? 1)时(k = 0,±1,±2,…),P点振动削弱,振幅为│A1-A2│。

4、波的反射、折射和衍射

知识点和高考要求相同。

5、多普勒效应

当波源或者接受者相对与波的传播介质运动时,接收者会发现波的频率发生变化。多普勒效应的定量讨论可以分为以下三种情况(在讨论中注意:波源的发波频率f和波相对介质的传播速度v是恒定不变的)——

a、只有接收者相对介质运动(如图3所示)

设接收者以速度v1正对静止的波源运动。

如果接收者静止在A点,他单位时间接收的波的个数为f ,

当他迎着波源运动时,设其在单位时间到达B点,则= v1 ,、

在从A运动到B的过程中,接收者事实上“提前”多接收到了n个波

n = 

显然,在单位时间内,接收者接收到的总的波的数目为:f + n = f ,这就是接收者发现的频率f。即

f

显然,如果v1背离波源运动,只要将上式中的v1代入负值即可。如果v1的方向不是正对S ,只要将v1出正对的分量即可。

b、只有波源相对介质运动(如图4所示)

设波源以速度v2正对静止的接收者运动。

如果波源S不动,在单位时间内,接收者在A点应接收f个波,故S到A的距离:= fλ 

在单位时间内,S运动至S′,即= v2 。由于波源的运动,事实造成了S到A的f个波被压缩在了S′到A的空间里,波长将变短,新的波长

λ′= 

而每个波在介质中的传播速度仍为v ,故“被压缩”的波(A接收到的波)的频率变为

f2 = 

当v2背离接收者,或有一定夹角的讨论,类似a情形。

c、当接收者和波源均相对传播介质运动

当接收者正对波源以速度v1(相对介质速度)运动,波源也正对接收者以速度v2(相对介质速度)运动,我们的讨论可以在b情形的过程上延续…

f3 =  f2 = 

关于速度方向改变的问题,讨论类似a情形。

6、声波

a、乐音和噪音

b、声音的三要素:音调、响度和音品

c、声音的共鸣

第二讲 重要模型与专题

一、简谐运动的证明与周期计算

物理情形:如图5所示,将一粗细均匀、两边开口的U型管固定,其中装有一定量的水银,汞柱总长为L 。当水银受到一个初始的扰动后,开始在管中振动。忽略管壁对汞的阻力,试证明汞柱做简谐运动,并求其周期。

模型分析:对简谐运动的证明,只要以汞柱为对象,看它的回复力与位移关系是否满足定义式①,值得注意的是,回复力系指振动方向上的合力(而非整体合力)。当简谐运动被证明后,回复力系数k就有了,求周期就是顺理成章的事。

本题中,可设汞柱两端偏离平衡位置的瞬时位移为x 、水银密度为ρ、U型管横截面积为S ,则次瞬时的回复力

ΣF = ρg2xS = x

由于L、m为固定值,可令: = k ,而且ΣF与x的方向相反,故汞柱做简谐运动。

周期T = 2π= 2π

答:汞柱的周期为2π 。

学生活动:如图6所示,两个相同的柱形滚轮平行、登高、水平放置,绕各自的轴线等角速、反方向地转动,在滚轮上覆盖一块均质的木板。已知两滚轮轴线的距离为L 、滚轮与木板之间的动摩擦因素为μ、木板的质量为m ,且木板放置时,重心不在两滚轮的正中央。试证明木板做简谐运动,并求木板运动的周期。

思路提示:找平衡位置(木板重心在两滚轮中央处)→ú力矩平衡和Σ?F6= 0结合求两处弹力→ú求摩擦力合力…

答案:木板运动周期为2π 。

巩固应用:如图7所示,三根长度均为L = 2.00m地质量均匀直杆,构成一正三角形框架ABC,C点悬挂在一光滑水平轴上,整个框架可绕转轴转动。杆AB是一导轨,一电动松鼠可在导轨上运动。现观察到松鼠正在导轨上运动,而框架却静止不动,试讨论松鼠的运动是一种什么样的运动。

解说:由于框架静止不动,松鼠在竖直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。设松鼠的质量为m ,即:

N = mg                            ①

再回到框架,其静止平衡必满足框架所受合力矩为零。以C点为转轴,形成力矩的只有松鼠的压力N、和松鼠可能加速的静摩擦力f ,它们合力矩为零,即:

MN = Mf

现考查松鼠在框架上的某个一般位置(如图7,设它在导轨方向上距C点为x),上式即成:

N·x = f·Lsin60°                 ②

解①②两式可得:f = x ,且f的方向水平向左。

根据牛顿第三定律,这个力就是松鼠在导轨方向上的合力。如果我们以C在导轨上的投影点为参考点,x就是松鼠的瞬时位移。再考虑到合力与位移的方向因素,松鼠的合力与位移满足关系——

= -k

其中k =  ,对于这个系统而言,k是固定不变的。

显然这就是简谐运动的定义式。

答案:松鼠做简谐运动。

评说:这是第十三届物理奥赛预赛试题,问法比较模糊。如果理解为定性求解,以上答案已经足够。但考虑到原题中还是有定量的条件,所以做进一步的定量运算也是有必要的。譬如,我们可以求出松鼠的运动周期为:T = 2π = 2π = 2.64s 。

二、典型的简谐运动

1、弹簧振子

物理情形:如图8所示,用弹性系数为k的轻质弹簧连着一个质量为m的小球,置于倾角为θ

查看答案和解析>>


同步练习册答案